

Preface

Content

Interactive design aids in accordance to US codes ACI 318-11, AISC 14th edition and ASCE-7-10

Guidelines of use

After installing a free trial or demo version the interactive templates will be available free of charge. The only requirement is a registration at www.VCmaster.com.

The examples provided have been created using VCmaster. All annotated and illustrated design aids can be used as a basis to create own templates. In order to do this a full version of VCmaster is necessary.

All templates are linked to various databases by TAB()- or SEL() functions. For instructional purposes these links are displayed in this document, but can also be hidden when printing.

What is VCmaster?

VCmaster is a software application for technical documentation specifically designed for engineers. The unique software concept integrates all structural design and CAD software. Universal interfaces guarantee easy data transfer, so that the output of all programs can be transposed.

Beside its functions for documentation, VCmaster offers an intuitive concept enabling engineers to carry out calculations. The input of mathematic formulas can be executed in natural notation directly in the document itself. The software significantly supports the reuse of structural calculations and documents. VCmaster simplifies modifications and adjustments and automates standard tasks. Collaboration with work-groups or with other offices and clients is uncomplicated as well. As a result, processing time and costs can be considerably reduced.

System Requirements

VCmaster 2017 or newer

Development and Copyrights

VCmaster has been developed in Germany VCmaster is a registered trademark All templates are made in the U.S.A. © Veit Christoph GmbH 1995-2018 www.VCmaster.com

Interactive Calculation Templates to US codes

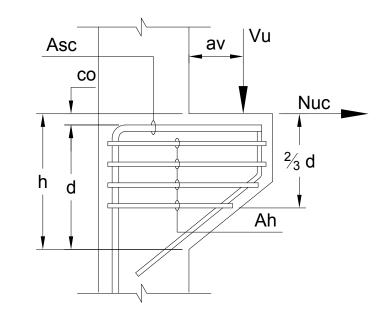
U.S. Page: 2

Contents

Chapter 1: Concrete Design	4
Corbel Design	4
Precast Spandrel Beam for Combined Shear and Torsion	7
Beam Ledge Design	11
Rectangular Section with Tension Reinforcement	14
Rectangular Section with Compression Reinforcement	16
Shear Reinforcement for Section Subject to Q & N	19
Shear Reinforcement for Section Subject to Q & T	22
Deflection of Shored Composite Section	24
Flexural Design of Flanged Section	28
Cracking Moment Strength for Prestressed Sections	31
Flexural Strength of Prestressed Member	32
Tension Controlled Limit for Prestressed Flexural Member	34
Prestress Losses	36
Punching Shear Reinforcement on Slab	39
One Way Joist	41
Two-Way Slab Analyzed by the Direct Design Method	47
Development Length of Bars in Tension	50
Group of Headed Studs in Tension Near an Edge	52
Shear Strength of Slab at Column Support	54
Simple Span Deep Beam by Strut-and-Tie Model	56
Continuous Deep Beam by Strut-and-Tie Model	60
Transfer of Horizontal Force at Base of Column	65
Bearing Wall by Empirical Method	67
Shear Design of Wall	70
Shear Friction	73
Single Adhesive Anchor in Tension	75
Single Headed Anchor Bolt in Tension	77
Single Headed Anchor Bolt in Shear Near an Edge	79
Deflection of Simple Beam	81
Shear Reinforcement for Section Subject to Q & M	84
Shear Reinforcement at Opening	87
Horizontal Shear for Composite Slab and Precast Beam	90

Interactive Calculation Templates to US codes

Chapter 2	: Foundation Design	92
	Reinforcement of Shallow Foundation	92
	Depth of Shallow Foundation	95
	Depth for Pile Cap	98
	Slab on Grade	101
Chapter 3	: Steel Design	102
	W-Shapes in Strong Axis Bending, Braced at Some Points	102
	W-Shape in Strong Axis Bending, Continuously Braced	106
	W-Shape in Minor Axis Bending	109
	W-Shape Subjected to Tension Force and Bending Moments	112
	W-Shapes in Axial Compression	117
	WT-Shapes in Axial Compression	120
	Built-Up W-Shapes with Slender Elements	124
	W-Shapes Subjected to Compression and Bending	128
	W-Shape Subjected to P and M including the Second Order Effect	134
	HSS-Shape in Strong Axis Bending	140
	W-Shape Subjected to Tension Force in a Bolted Connection	143
	WT-Shape Subjected to Tension Force in Welded Connections	146
	Interior Panel of Built-Up Girder with Transverse Stiffeners	149
	End Panel of Built-Up Girder with Transverse Stiffeners	151
	Composite Beam Subjected to Bending	153
Chapter 4	: Connection Design	159
	Base Plate Subjected to Concentric Loading	159
	Base Plate Subjected to Small Eccentricity	161
	Base Plate Subjected to Large Eccentricity	164
	Shear Lug	167
	Fillet Weld Subjected to Longitudinal Shear Force	169
	Bolts in Bearing Type Connection Subjected to T & V	171
	Slip Critical Connection with Short-Slotted Holes	173
Chapter 5	: Design Loads	175
	Wind load for Solid Freestanding Walls & Signs	175
	Snow Loads for Flat Roof	178
	Snow Loads for Sloped Roof	179
	Seismic Base Shear	180



Chapter 1: Concrete Design

Corbel Design

Chapter 1: Concrete Design

Design of Corbel as per ACI 318-11 Chapter 11

System

Corbel Width, b=			14.0 in
Corbel Height, h=			12.0 in
Concrete Cover, co=			1.0 in
Corbel Depth, d=	h-co = 12.0-1.0	=	11.0 in
Distance from Column Face to	o Vertical Load, a _v =		3.0 in

Load

Ultimate Vertical Load, V _u =	88.8 kips
Ultimate Horizontal Load, Nuc=	32.0 kips

Material Properties

Concrete Strength, f' _c =		5000 psi
Yield Strength of Reinforcement, f _y =		60000 psi
Shear Strength Reduction Factor (According to Cl.9.3.2 of ACl318), Φ =		0.75
Modification Factor for Lightweight Concrete, $\lambda =$		1.00
Friction Factor (According to Cl.11.6.4.3 of ACI318), μ = 1.4* λ	=	1.40

Check	Vertical Load Capacity			
	V _{n1} =	0.2*f′ _c *b*d/1000	=	154.0 Kips
	V _{n2} =	(480+0.08*f' _c)*b*d/1000	=	135.5 Kips
	V _{n3} =	1600*b*d/1000	=	246.4 Kips
	Nominal Vertical Capacity (Acc	ording to Cl.11.8.3.2.1 of ACI318),		
	ΦV_n =	$\Phi*MIN(V_{n1}; V_{n2}; V_{n3})$	=	101.6 Kips
	Vertical Load Capacity=	IF(V _u >ΦV _n ;"Not Pass";"Pass")	=	Pass
Deteri	mine Shear Friction Reinforcen	nent (A _{vf})		
	Required Area of Reinforceme	ent for Shear Friction (According to Cl.11.6.4.1	of ACI3	318),
	A _{vf} =	$V_{u} \times 1000/(\Phi \times f_{y} \times \mu)$	=	1.41 in ²
Deteri	mine Direct Tension Reinforce	ment (A _n)		
	Minimum Horizontal Force on (Corbel, Nuc_min= $0.2 \times V_u$	=	17.8 Kips
	Horizontal Force on Corbel, Nu	ic_act= MAX (Nuc ; Nuc_min)	=	32.0 kips
	Required Area of Reinforceme	ent for Direct Tension (According to Cl.11.8.3.1	of ACI	318),
	A _n =	Nuc_act *1000/((Φ) *f _y)	=	0.71 in ²
Deteri	mine Flexural Reinforcement (A	λ _f)		
	M _u =	V _u *a _v +Nuc_act*(h-d)	=	298.4 kip*in
	Required Area of Reinforceme	ent for Flexural (According to Cl.11.8.3.3 of ACI	318),	
	A _f =	$M_u \times 1000/(\Phi \times f_y \times 0.9 \times d)$	=	0.67 in ²
Deteri	mine Primary Tension Reinforc	ement (A _{sc})		
	Required Area of Reinforceme	ent for Primary Tension (According to Cl.11.8.3.	.5 of A0	CI318),
	A _{sc} =	MAX ((2/3 * A_{vf}) + A_n ; A_f + A_n)	=	1.65 in ²
	Minimum Area of Reinforceme	ent for Primary Tension (According to Cl.11.8.5	of ACI	318),
	A _{sc_min} =	0.04 * f' _c / f _y * b * d	=	0.51 in ²
	A _{sc_Req} =	MAX (A _{sc} ; A _{sc_min})	=	1.65 in ²
	Provided Reinforcement, Bar=	SEL("ACI/Bar"; Bar;)	=	No.9
		ement, A _{sb} = TAB("ACI/Bar"; Asb; Bar=Bar)	=	1.00 in ²
	Number of Provided Bars, n=	,		2
	Provided Area of Reinforcemer	nt, A _{sc Prov} = n * A _{sb}	=	2.00 in ²
	Check Validity=	IF(A _{sc_Prov} ≥A _{sc_Req} ; "Valid"; "Invalid")	=	Valid
	-			

Determine Horizontal Reinforcement (A_h)

Required Area of Reinforcement for Horizontal Shear (According to Cl.11.8.4 of ACI318),			
A _{h_Req} =	$0.5^*(A_{sc_Prov}-A_n)$	=	0.65 in ²
Provided Reinforcement, Bar=	SEL("ACI/Bar"; Bar;)	=	No.3
Provided Area of Bar Reinforcement, A_{sb}	TAB("ACI/Bar"; Asb; Bar=Bar)	=	0.11 in ²
Number of Provided Bars, n=			6
Provided Area of Reinforcement, Ah_Prov	= n * A _{sb}	=	0.66 in ²
Check Validity= IF(A _{h_Pro}	_{ov} ≥A _{h_Req} ; "Valid"; "Invalid")	=	Valid
Distribute in two-thirds of Effective Corbe	I Depth adjacent to A _{sc}		

Design Summary

Area of Reinforcement for Primary Tension A _{sc} =	A _{sc_Prov}	=	2.00 in ²
Area of Reinforcement for Horizontal Shear, A_h =	A _{h_Prov}	=	0.66 in ²
Distribute in two-thirds of Effective Corbel Depth adjace	ent to A _{sc}		

Precast Spandrel Beam for Combined Shear and Torsion

Design Precast Spandrel Beam for Combined Shear and Torsion as per ACI 318-11 Chapter 11 A'_v Aı $A_{\underline{s}\underline{c}}$ h h, b bL System Width of Beam, b= 16.0 in Height of Beam, h= 48.0 in Width of Beam Ledge, b_l = 8.0 in Height of Beam Ledge, h_L= 16.0 in Concrete Cover, co= 2.50 in Concrete Cover to Center of Stirrup, co'= 1.50 in Effective Depth of Beam, d= h-co 45.50 in Load Ultimate Bending Moment, M₁₁= 1316.0 kip*ft Ultimate Torsional Moment, T_u= 108.6 kip*ft Ultimate Shear Force, V_u= 127.2 kips **Material Properties** Concrete Strength, f'c= 5000 psi Yield Strength of Reinforcement, fv= 60000 psi Yield Strength of Stirrups Reinforcement, fvt= 60000 psi Shear Strength Reduction Factor (According to Cl.9.3.2 of ACI318), Φ_s = 0.75 Tension Strength Reduction Factor (According to CI.9.3.2 of ACI318), Φ_{t} = 0.90 Modification Factor for Lightweight Concrete, $\lambda =$ 1.00 Friction Factor (According to Cl.11.6.4.3 of ACI318), μ = 1.4* λ 1.40 =

ACI 318

	•	Beam for Combined Shear and		Page: 8		
Determine Co	Determine Concrete Cracking Torque					
Area E	nclosed by Outside Perimeter	of Spandrel Beam Including the Lede	ge,			
A _{cp} =	b *	h + b _L * h _L	= 89	96 in ²		
Outsic	e Perimeter of Spandrel Bean	n Including the Ledge,				
P _{cp} =	2*	(b + b _L + h)	= 14	14 in		
Concr	ete Cracking Torque,T _{cr} =4*	$\lambda^* \sqrt{f_c} * \frac{A_{cp}^2}{P_{cp}} / 12000$	= 13	31.4 kip*ft		
Torsic	nal Moment should be: IF($T_u < \Phi_s * T_{cr}/4$;"Neglected";"Checked")	= Che	cked		
Calculation o	Torsion Reinforcement					
Area E		Outermost Closed Transverse Torsio	nal Reinforcen	nent (According to		
A _{oh} =	(h-2*co')*(b	-2*co')+(b _L)*(h _L -2*co')	= 68	39.0 in ²		
A _o =	0.85*A _{oh}		= 58	35.6 in ²		
Angle	of Compression Diagonal Stru	ts (According to 11.5.3.6 of ACI318),				
Θ=			2	15 °		
Required Area for Torsion Shear per Stirrups Spacing (According to Eq. 11-20, 21 of ACI318),			1318),			
A' _{vt} =	$\frac{T_u}{2*\Phi_s*A_o*}$	*12000 f _{yt} *(1/tan(@))	=	0.025 in ² per in		
Calculation o	Shear Reinforcement					
Nomir	al Shear Strength Provided by	Concrete (According to Eq.11-3 of A	CI318),			
V _c =	$2 \lambda^* \sqrt{fc}^*$	b*d 1000	= 10	02.95 kips		
Nomir	al Shear Strength Provided by	Reinforcement (According to Eq.11-	2 of ACI318),			
V _s =	$V_u/\Phi_s - V_c$		= 6	6.65 kips		
Requi	ed Area for Direct Shear per S	Stirrups Spacing (According to Eq. 11	-1, 2 of ACI318	3),		
A' _{vs} =	$\frac{V_s * 1000}{f_{yt} * d}$		=	0.024 in ² per in		

Chapter 1: Concrete Design

Precast Spandrel Beam for Combined Shear and Torsion

ACI 318 Page: 9

Calculation of Combined Shear and Torsion Reinforcement

Total Required Area for Torsion & Shear per Stirrups Spacing (According to Cl.11.5.3.8 of ACI318),

A' _v = A' _{vt} +A' _{vs} /2		= 0.037	' in ² pe	r in per leg
Provided Reinforcement, Ba	ar= SEL("ACI/Bar"; Ba	ar;)	=	No.4
Provided Reinforcement, A _s	_b = TAB("ACI/Bar"; As	sb; Bar=Bar)	=	0.20 in ²
Required Stirrups Spacing,	s_ _{Req} = A _{sb} /A' _v		=	5.41 in
Provided Stirrups Spacing, s	s_Prov ⁼			5.00 in
Check Validity=	IF(s_ _{Prov} ≤s_ _{Req} ; "\	√alid"; "Invalid")	=	Valid
Perimeter of Stirrups, Ph=	2*(b-2*co'+h-	2*co')+2*b _L	=	132.00 in
Maximum Stirrups Spacing	Due to Torsion (According to C	I.11.6.6 of ACI318)),	
s _{max_t} =	MIN(Ph/8; 12)		=	12.00 in
Maximum Stirrups Spacing	Due to Shear (According to Cl.	11.4.5 of ACI318),		
s _{max_v} =	MIN(d/2; 24)		=	22.75 in
Maximum Stirrups Spacing,	s _{max} = MIN(s _{max_t} ; s _{max_t}	v)	=	12.00 in
Check Validity=	IF(s_ _{Prov} ≤s _{max} ; "Valid"; "In	valid")	=	Valid

Calculation of Longitudinal Torsion Reinforcement

Required Area of Longitudinal Torsion Reinforcement (According to Cl.11.5.3.7 of ACI318),

$$A_{l_i} = \frac{A'_{vt} * Ph}{\tan(\Theta)^2} * \frac{f_{yt}}{f_y} = 3.30 \text{ in}^2$$

Minimum Area of Longidudinal Torsion Reinforcement (According to Eq.11-24 of ACI318),

$$A_{l_min} = \frac{5^* \sqrt{f_c} * A_{cp}}{f_y} - A'_{vt} * Ph * \frac{f_{yt}}{f_y} = 1.98 \text{ in}^2$$

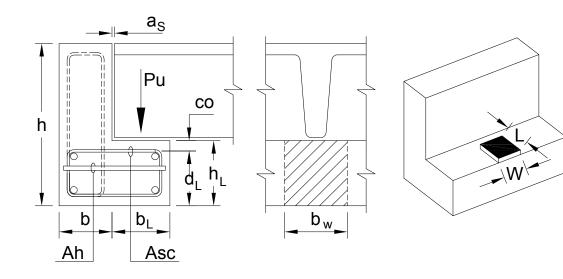
$$A_{l_Req} = MAX(A_{l_i}; A_{l_min}) = 3.30 \text{ in}^2$$
Provided Reinforcement, Bar= SEL("ACI/Bar"; Bar;) = No.5

Provided Reinforcement, A	sb ⁼ TAB("ACI/Bar"; Asb; Bar=Bar)	=	0.31 in ²
Number of Bars, n=			12
Provided Longitudinal Rein	forcement, $A_{I_Prov} = A_{sb} * n$	=	3.72 in ²
Check Validity=	IF(A _{I_Prov} ≥A _{I_Req} ; "Valid"; "Invalid")	=	Valid

Chapter 1: Concrete Design Precast Spandrel Beam for Combined Shear and Torsion

ACI 318 Page: 10

	Treeast oparia		51011	_
Calculation of Required Flexural Reinforcement				
		M _u *12*1000		
	R _n =	$\Phi_t b^* d^2$	= 53	80 psi
		$\Phi_t * b * d$		
	ρ=	$\frac{0.85^{*}f_{c}}{f_{y}}^{*}\left(1-\sqrt{1-\frac{2^{*}R_{n}}{0.85^{*}f_{c}}}\right)$	=	0.0095
	Area of Flexural Reinforcement	$A_s = \rho^* b^* d$	=	6.92 in ²
Calcula	tion of Total Bottom Reinforc	ement at Mid-Span		
	Percentage of Torsional Reinfo	rcement Concentrated on Bottom Side, Per=	1	6 %
	Total Area of Bottom Reinforce			
	A _{sc_Req} =	A _{I Reg} *Per/100+A _s	=	7.45 in ²
	Provided Reinforcement, Bar=	SEL("ACI/Bar"; Bar;)		lo.11
	Provided Reinforcement, A _{sb} =	TAB("ACI/Bar"; Asb; Bar=Bar)		1.56 in ²
	Number of Bars, n=			5
	Total Area of Bottom Reinforce	ment, A _{sc Prov} = A _{sb} * n	=	7.80 in ²
	Check Validity=	_ IF(A _{sc_Prov} ≥A _{sc_Req} ; "Valid"; "Invalid")	= ``	Valid
Design	Summary			
_	Total Required Area for Torsion	n & Shear per Stirrups Spacing,		
	A' _v = A' _v	= 0.037	in ² per in	per leg
	Provided Stirrups Spacing, s_Pr	ov= s_Prov	=	5.00 in
	Provided Longitudinal Reinforce	ement, A _{I_Prov} = A _{I_Prov}	=	3.72 in ²
	Total Area of Bottom Reinforce	ment, A _{sc_Prov} =A _{sc_Prov}	=	7.80 in ²



Chapter 1: Concrete Design

Beam Ledge Design

ACI 318 Page: 11

Design of Beam Ledge as per ACI 318-11 Chapters 9 & 11

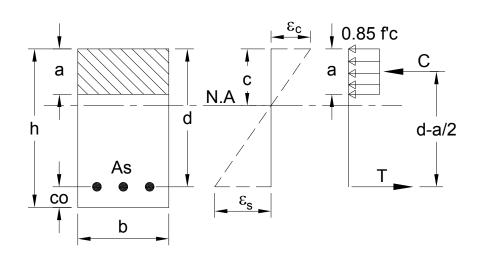
System

	Width of Beam, b=				7.0 in
	Height of Beam, h=				36.0 in
	Width of Beam Ledge, b _L =				6.0 in
	Height of Beam Ledge, h _L =				12.0 in
	Concrete Cover, co=				1.25 in
	Width of Bearing Pad, W=				4.5 in
	Length of Bearing Pad, L=				4.5 in
	Thickness of Bearing Pad, t_b =				0.3 in
	Gap Spacing, a _s =				1.0 in
	Shear Spacing, a _v =		2/3 * L + a _s	=	4.0 in
	Flexural Spacing, a _f =		a _v + co	=	5.25 in
	Effective Width According to Sh	near Requirements, b _{ws} =	W + 4 * a _v	=	20.5 in
	Effective Width According to Fle	exural Requirements, b _{wf} =	W + 5 * a _f	=	30.8 in
	Effective Depth of Beam Ledge	, d _L =	h _L -co	=	10.75 in
Load					
	Dead Load, P _D =				11.0 kips
	Live Load, P _L =				6.5 kips
	Service Load, P=	P _D + P _L		=	17.5 kips
	Ultimate Load, P _u =	1.2 * P _D + 1.6 * P _L		=	23.6 kips

Beam Ledge Design

Material Properties			
Concrete Strength, f' _c =			5000 psi
Yield Strength of Reinforcem	nent, f _y =		60000 psi
Shear Strength Reduction Fa	actor (According to Cl.9.3.2 of ACl318), $\Phi_{ m s}$ =		0.75
Bearing Strength Reduction	Factor (According to Cl.9.3.2 of ACl318), $\Phi_{\rm b}$ =		0.65
Modification Factor for Light	weight Concrete, $\lambda =$		1.00
Friction Factor (According to	CI.11.6.4.3 of ACI318), $\mu\text{=}~1.4^{\star}~\lambda$	=	1.40
Maximum Service Load for E	Bearing Pads, q=		1000 psi
Check Bearing Plate Dimension			
Capacity of Bearing Plate, B	_p = W * L * q /1000	=	20.25 kips
Check Validity=	IF(B _p >P;"Valid" ;"Increase Dimension")	=	Valid
Check Concrete Bearing Strength			
Bearing Strength of Concrete	e,	=	55.9 kips
Check Validity=	IF(ΦP_{nb} >Pu;"Valid" ;"Invalid")	=	Valid
Check Maximum Nominal Shear-T	ransfer by Effective Section		
Nominal Shear by Effective	Section (According to CI.11.9.3.2.1 of ACI318),		
V _{n1} =	0.2 * f' _c * b _{ws} * d _L /1000	=	220.4 kips
V _{n2} =	$(480 + 0.08 * f_c) * b_{ws} * d_L / 1000$	=	193.9 kips
V _{n3} =	1600 * b _{ws} * d _L /1000	=	352.6 kips
ΦV _n =	$\Phi_{s} * MIN(V_{n1}; V_{n2}; V_{n3})$	=	145.4 kips
Check Validity=	IF($\Phi V_n > P_u$;"Valid" ;"Increase Dimension")	=	Valid
Determine Shear Friction Reinford	cement (A _{vf})		
Required Reinforcement for	Shear Friction (According to Cl.11.6.4.1 of ACI31	8),	
A _{vf} =	P _u * 1000 / (Φ _s * f _y * μ)	=	$0.37 \text{ in}^2 \text{ per bws}$
Determine Direct Tension Reinford	cement (A _n)		
Required Reinforcement for	Direct Tension (According to Cl.11.8.3.4 of ACI31	8),	
A _n =	0.2 * P _u * 1000 / (Φ _s * f _y)	=	0.10 in ² per bwf
Determine Flexural Reinforcement	t (A _f)		
M _u =	P _u * a _f + 0.2 * P _u * (h _L - d _L)	=	129.8 kip*in
Required Reinforcement for	Flexural (According to Cl.11.8.3.3 of ACI318),		
A _f =	M _u * 1000 / (Φ _s * f _y * 0.8 * d _L)	=	0.34 in ² per bwf

Beam Ledge Design


Determine Primary Tension Reinforcement (A _{sc})					
Required Area of Reinforcement for Primary Tension (According to CI.11.8.3.5 of ACI318),					
A _{sc} =	MAX (2/3 * A_{vf}/b_{ws} + A_n/b_{wf} ; A_f/b_{wf} + A_n/b_{wf})	=	0.015 in ² per in		
Minimum Area of Reinforceme	ent for Primary Tension (According to Cl.11.8.5 c	of ACI31	8),		
A _{sc_min} =	$0.04 * f'_{c} / f_{y} * d_{L}$	=	0.036 in ² per in		
A _{sc_req} =	MAX (A _{sc} ; A _{sc_min})	=	0.036 in ² per in		
Provided Reinforcement, Bar= Spacing between Bars, s=	SEL("ACI/Bar"; Bar;)	=	No.5 8.0 in		
Provided Reinforcement, A _{sb} =	TAB("ACI/Bar"; Asb; Bar=Bar)	=	0.31 in ²		
Check Validity=	IF(A _{sb} /A _{sc_req} >s; "Valid"; "Invalid")	=	Valid		
Determine Horizontal Reinforcement	: (A _h)				
Required Area of Reinforceme	ent for Horizontal Shear (According to Cl.11.8.4 o	of ACI31	8),		
A _h =	$0.5^{*}(A_{sc_req}-A_n/b_{wf})$	=	0.016 in ² per in		
Provided Reinforcement, Bar=	SEL("ACI/Bar"; Bar;)	=	No.4		
Provided Reinforcement, A _{sb} =	TAB("ACI/Bar"; Asb; Bar=Bar)	=	0.20 in ²		
Check Validity=	IF(A _{sb} /A _h >s; "Valid"; "Invalid")	=	Valid		
Design Summary					
Primary Tension Reinforcemer	it, A _{sc_req} = A _{sc_req}	=	0.036 in ² per in		
Horizontal Shear Reinforcement	nt, A _h = A _h	=	0.016 in ² per in		
Distribute in two-thirds of Effective Ledge Depth adjacent to A_{sc}					
Interactive Design Aids for Structural Engineers					

2.32 in²

=

Design of Rectangular Section with Tension Reinforcement only as per ACI 318-11 Chapters 9 & 10

System

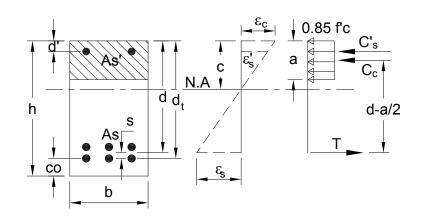
	Width of Concrete Section	ion, b=		12.0 in
	Depth of Concrete Sect	ion, h=		16.0 in
	Concrete Cover, co=			2.5 in
	Effective Depth of Conc	strete Section, $d=h-co = 16.0-2.5$	=	13.5 in
Load				
	Bending Moment due to	o Dead Load, M _D =		56.0 kip*ft
	Bending Moment due to	D Live Load, M _L =		35.0 kip*ft
	Ultimate Bending Mome	ent, $M_U = (1.2^*M_D) + (1.6^*M_L)$	=	123.2 kip*ft
Materi	al Properties			
	Concrete Strength, f_c^{r} =			4000 psi
	Yield Strength of Reinfo	prcement, f _y =		60000 psi
	Tension Strength Reduc	ction Factor (According to Cl.9.3.2 of ACl318), Φ =		0.90
	Factor for Rectangular (Compressive Stress Block (According to Cl.10.2.7.3),		
	β ₁ =	$IF(f'_c{\leq}4000; 0.85; IF(f'_c{\geq}8000; 0.65; 1.05{-}0.00005^*f'_c))$	=	0.85

Area of Reinforcement

R _n =	$\frac{M_{U}^{*}12000}{\Phi^{*}b^{*}d^{2}}$	=	751.1 psi
ρ=	$0.85*\frac{f_{c}}{f_{y}}*\left(1-\sqrt{1-\frac{2*R_{n}}{0.85*f_{c}}}\right)$	=	0.0143

Area of Reinforcement, $A_s = \rho^* b^* d$

Chapter 1: Concrete Design Rectangular Section with Tension Reinforcement


ACI 318 Page: 15

	Minimum Area of Reinforcement (According to Cl.10.5 of ACI318),				
	A _{s_min1} =	$\frac{3^*\sqrt{f_c}^*b^*d}{f_y}$		=	0.51 in ²
	A _{s_min2} =	$\frac{200^{*}b^{*}d}{f_{y}}$		=	0.54 in ²
	A _{s_min} =		$MAX(A_{s_min1}; A_{s_min2})$	=	0.54 in ²
	Required Area of Rein	forcement, A _{sc_R}	eq= MAX(A _s ; A _{s_min})	=	2.32 in ²
	Provided Reinforceme		SEL("ACI/Bar"; Bar;)	=	No.10
	Provided Reinforceme	ent, A _{sb} =	TAB("ACI/Bar"; Asb; Bar=Bar)	=	1.27 in ²
	Number of Bars, n=				2
	Vertical Reinforcemen	it, A _{sc_Prov} =	A _{sb} * n	=	2.54 in ²
	Check Validity=	IF(A _{se}	_{c_Prov} ≥A _{sc_Req} ; "Valid"; "Invalid")	=	Valid
Check	Tension Controlled				
	Depth of Rectangular	Stress Block, a=	$\frac{A_{sc_Prov} * f_y}{0.85 * f_c * b}$	=	3.74 in
	Distance from Extrem	e Compression F	iber to Neutral Axis, $c=a/\beta_1$	=	4.40 in
	c/d =		c/d = 4.40/13.5	=	0.326
	IF(c/d>0.375; "Add Co	om. RFT"; "Tensi	on Controlled")=	Tensior	n Controlled
Desig	n Summary				
	Required Area of Rein	iforcement, A _{sc} =	A _{sc_Prov}	=	2.54 in ²

Rectangular Section with Compression Reinforcement

Design of Rectangular Section with Compression Reinforcement as per ACI 318-11 Chapters 9 & 10

System

	Width of Concrete Section, b=		12.0 in
	Depth of Concrete Section, h=		32.5 in
	Concrete Cover, co=		2.5 in
	Effective Depth of Concrete Section to Extreme Layer , $d_t = h - co = 32.5 - 2.5$	=	30.0 in
	Distance between C.G of Tension Reinforcement and Extreme Layer, s=		1.2 in
	Effective Depth of Concrete Section to C.G of Tension Reinforcement, $d=d_t - s$	=	28.8 in
	Depth of Compression Reinforcement, d'=		2.5 in
d			
	Den d'an Mensent dur te Den dit end M		400 0 1.1+6

Load

Bending Moment due to Dead Load, M _D =			430.0 kip*ft
Bending Moment due to Live Load, M _L =			175.0 kip*ft
Ultimate Bending Moment, M _U =	$(1.2*M_D)+(1.6*M_L)$	=	796.0 kip*ft

Material Properties

Concrete Strength, f' _c =		4000 psi
Yield Strength of Reinforcement, f _y =		60000 psi
Modulus of Elasticity of Reinforcement, E _s =	:	29000000 psi
Tension Strength Reduction Factor (According to Cl.9.3.2 of ACl318), Φ =		0.90
Factor for Rectangular Compressive Stress Block (According to Cl.10.2.7.3),		
β_1 = IF(f'_c \le 4000; 0.85; IF(f'_c \ge 8000; 0.65; 1.05 - 0.00005*f'_c))	=	0.85

Chapter 1: Concrete Design Rectangular Section with Compression Reinforcement

ACI 318 Page: 17

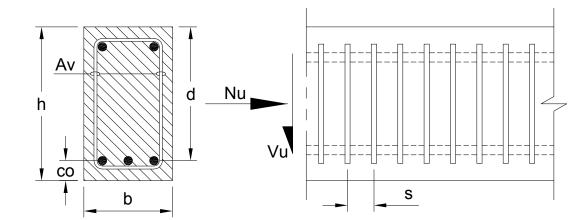
Check If	Check If Compression Reinforcement is Required						
(ω _t =	0.31875*β ₁	=	0.271			
F	R _{nt} =	ω _t *(1-0.59*ω _t)*f' _c	=	910.7 pci			
F	R _n =	$\frac{M_{U}^{*}12000}{\Phi^{*}b^{*}d_{t}^{2}}$	=	982.7 psi			
(Compression Reinforcement is	: IF(R _n >R _{nt} ;"Required";"Not Required")	=	Required			
Determi	ne Required Moment Resiste	d by Compression Reinforcement					
(ω _t =	0.31875*β ₁	=	0.271			
ł	p _t =	0.31875 * f' _c * β ₁ / f _y	=	0.01806			
ł	p=	$\rho_t^* d_t^{\prime} d$	=	0.01881			
(ω=	$\rho^{*}f_{y}/f_{c}$	=	0.28215			
1	Moment Resisted by Tension R	EFT, M _{nt} = $\omega^* (1-0.59 \omega)^* \frac{f_c b^* d^2}{12000}$	=	780.3 kip*ft			
1	Moment Resisted by Compress	ion RFT, $M'_n = M_U / \Phi - M_{nt}$	=	104.1 kip*ft			
Require	d Area of Compression Reinf	orcement					
C	d'/c _{limit} =	$1 - \frac{f_y}{E_s * 0.003}$	=	0.31			
C	C _{limit} =	$\left(1 - \frac{\left(f_{y}\right)}{E_{s} * 0.003}\right) * d_{t}$	=	9.3 in			
C	C _{cal=}	0.375*d _t	=	11.3 in			
C	d'/c _{cal} =	$d'/(c_{cal})$	=	0.22			
f	"si=	${\rm MIN}(0.003^{*}{\rm E_{s}}^{*}(1\text{-}{\rm d'/c_{cal}});{\rm f_{y}})$	=	60000 psi			
f	" _s =	$IF(d'/c_{cal} \le d'/c_{limit}; f_y; f'_{si})$	=	60000 psi			
F	Required Reinforcement Area f	or Compression, A' _s = $\frac{M'_n * 12000}{f'_s * (d - d')}$	=	0.79 in ²			
F	Provided Reinforcement, Bar=	SEL("ACI/Bar"; Bar;)	=	No.6			
F	Provided Reinforcement, A _{sb} =	TAB("ACI/Bar"; Asb; Bar=Bar)	=	0.44 in ²			
1	Number of Bars, n=			2			
N	Vertical Reinforcement, A' _{s_Prov}	,= A _{sb} * n	=	0.88 in ²			
(Check Validity=	IF(A' _{s_Prov} ≥A' _s ; "Valid"; "Invalid")	=	Valid			
F	Required Reinforcement Area f	or Tension, $A_s = A'_s + (\rho^*b^*d)$	=	7.29 in ²			
	Interactive	e Design Aids for Structural Engine	ers				

Chapter 1: Concrete Design

Rectangular Section with Compression Reinforcement

ACI 318 Page: 18

	Minimum Area of Reinforcement (According to CI.10.5 of ACI318),				
	A _{s_min1} =	$\frac{3*\sqrt{f_c}*b*d}{f_y}$	=	1.09 in ²	
	A _{s_min2} =	$\frac{200^{*}b^{*}d}{f_{y}}$	=	1.15 in ²	
	A _{s_min} =	MAX(A _{s_min1} ; A _{s_min2})	=	1.15 in ²	
	Required Area of Reinforcement, Asc	:_ _{Req} =MAX(A _s ; A _{s_min})	=	7.29 in ²	
	Provided Reinforcement, Bar=	SEL("ACI/Bar"; Bar;)	=	No.10	
	Provided Reinforcement, A _{sb} =	TAB("ACI/Bar"; Asb; Bar=Bar)	=	1.27 in ²	
	Number of Bars, n=			6	
	Vertical Reinforcement, A _{sc_Prov} =	A _{sb} * n	=	7.62 in ²	
	Check Validity=	IF(A _{sc_Prov} ≥A _{sc_Req} ; "Valid"; "Invalid")	=	Valid	
Desigr	Design Summary				
	Required Reinforcement Area for Co	mpression, A' _s = A' _{s_Prov}	=	0.88 in ²	
	Required Area of Reinforcement, A _{sc}	= A _{sc_Prov}	=	7.62 in ²	



Shear Reinforcement for Section Subject to Q & N

ACI 318

Page: 19

Design of Shear Reinforcement for Section Subject to Shear & Axial Compression As per ACI318-11

System

	Width of Concrete Section, b= Depth of Concrete Section, h= Concrete Cover, co=			12.0 in 16.0 in 2.25 in
	Effective Depth of Concrete Section, d=	h-co	=	13.75 in
Load				
	Shear Force due to Dead Load, V_D =			10.0 kips
	Shear Force due to Live Load, V_L =			5.0 kips
	Ultimate Shear Force, V _u =	$(1.2*V_D)+(1.6*V_L)$	=	20.0 kips

Axial Compression Force due to Dead Load	, N _D =		4.2 kips
Axial Compression Force due to Live Load,	N _L =		3.1 kips
Ultimate Axial Compression Force, N _u =	$(1.2*N_D)+(1.6*N_L)$	=	10.0 kips

Material Properties

Concrete Strength, f' _c =	4000 psi
Yield Strength of Reinforcement, f _y =	60000 psi
Shear Strength Reduction Factor (According to Cl.9.3.2 of ACl318), Φ =	0.75
Modification Factor for Lightweight Concrete, $\lambda =$	1.00

Chapter 1: Concrete Design Shear Reinforcement for Section Subject to Q & N

ACI 318 Page: 20

Determine Concrete Shear Strength		10)		
	/ Concrete (According to Eq. 11-4 of ACI3	18),		
V _c = 2*	$\left(1 + \frac{N_u * 1000}{2000 * h * b}\right) * \lambda * \frac{\sqrt{f_c} * b * d}{1000}$	=	21.4 kips	
Shear Reinforcement is : IF(V _u >Φ*V _c ;"Required";"Not Required")	=	Required	
Determine Area of Shear Reinforcement				
Nominal Shear Strength provided by	Reinforcement (According to Eq. 11-2 of	ACI318	3),	
V _s =	$\frac{V_{u} \cdot \Phi^* V_{c}}{\Phi}$	=	5.3 kips	
Maximum Allowable Shear Strength	provided by Reinforcement (According to	CI.11.4	I.7.9 of ACI318),	
V _{s_max} =	$8^*\lambda^*\frac{\sqrt{f_c}^*b^*d}{1000}$	=	83.5 kips	
IF(V _s >V _{s_max} ; "Increase Beam Dim	IF(V _s >V _{s_max} ; "Increase Beam Dimension"; "OK")			
_ Spacing of Provided Stirrups, s=			6.75 in	
Required Area of Reinforcement, A	$v = \frac{V_{s} * s * 1000}{f_{y} * d}$	=	0.04 in ²	
Minimum Area of Reinforcement (A	ccording to CI.11.4.6.3 of ACI318),			
A _{v_min1} =	$\frac{0.75^*\sqrt{f_c}^*b^*s}{f_y}$	=	0.06 in ²	
A _{v_min2} =	$\frac{50^{*}b^{*}s}{f_{y}}$	=	0.07 in ²	
A _{v_min} =	MAX(A _{v_min1} ; A _{v_min2})	=	0.07 in ²	
Required Area of Reinforcement, A_{v}	$_{VC, Reg} = MAX(A_V; A_{V, min})$	=	0.07 in ²	
Provided Reinforcement, Bar=	SEL("ACI/Bar"; Bar;)	=	No.3	
Provided Reinforcement, A _{sb} =	TAB("ACI/Bar"; Asb; Bar=Bar)	=	0.11 in ²	
Number of Stirrups, n=			1	
Provided Area of Reinforcement, A	vc_Prov ⁼ A _{sb} * n * 2	=	0.22 in ²	
Check Validity=	$IF(A_{vc_Prov} \ge A_{vc_Req}; "Valid"; "Invalid")$	=	Valid	

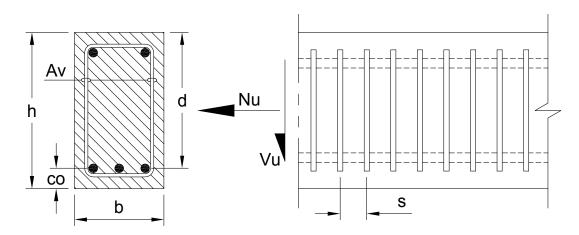
Chapter 1: Concrete Design

Shear Reinforcement for Section Subject to Q & N

ACI 318 Page: 21

Determine Maximum Permissible Spacing of Stirrups

Allowable Shear Strength provided by Reinforcement for Spacing Limit (According to Cl.11.4.5.3 of ACI318),


V _{s_limit} =	$4 \star \lambda \star \sqrt{f_c} \star b \star d / 1000$	=	41.7 kips
Factor for Maxi	mum Spacing of Stirrups, Fac=IF(V _s ≤V _{s_limit} ;1;0.5)	=	1.0
Maximum Space	ing of Stirrups (According to Cl.11.4.5.1 of ACI318),		
s _{max} =	MIN(d/2;24) * Fac	=	6.88 in
Check Validity=	IF(s≤s _{max} ;"Valid"; "Invalid")	=	Valid
Design Summary			
Provided Area	of Shear Reinforcement, Aug Brou = Aug Brou	=	0.22 in ²

Provided a view of enteal real foreentent, rvc_prov	/ VC_Prov		0.22
Spacing of Stirrups, s=	S	=	6.75 in

Shear Reinforcement for Section Subject to Q & T

Design of Shear Reinforcement for Section Subject to Shear & Axial Tension As per ACI318-11

System

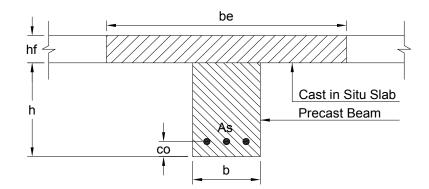
	Width of Concrete Section, b=			10.5 in
	Depth of Concrete Section, h=			18.0 in
	Concrete Cover, co=			2.0 in
	Effective Depth of Concrete Section, d=	= h -co	=	16.0 in
Load				
	Shear Force due to Dead Load, V_D =			12.8 kips
	Shear Force due to Live Load, V_L =			9.0 kips
	Ultimate Shear Force, V _u =	$(1.2*V_D)+(1.6*V_L)$	=	29.8 kips
	Axial Tension Force due to Dead Load,	N _D =		-2.0 kips
	Axial Tension Force due to Live Load, N	N _L =		-15.2 kips
	Ultimate Axial Tension Force, N _u =	$(1.2*N_D)+(1.6*N_L)$	=	-26.7 kips
Materi	al Properties			
	Concrete Strength, f'c=			3600 psi
	Yield Strength of Reinforcement, fy=			40000 psi
	Shear Strength Reduction Factor (Acco	ording to Cl.9.3.2 of ACl318), Φ =		0.75
	Modification Factor for Lightweight Con	crete, λ=		0.85

Determine Concrete Shear Strength

Nominal Shear Strength provided by Concrete (According to Eq. 11-8 of ACI318),

$$V_{c} = 2^{*} \left(1 + \frac{N_{u} * 1000}{500^{*} h * b}\right)^{*} \lambda^{*} \frac{\sqrt{f_{c} * b * d}}{1000} = 12.3 \text{ kips}$$

Shear Reinforcement is : $IF(V_u > \Phi * V_c; "Required"; "Not Required") = Required$


ACI 318 Page: 23

Determ	nine Area of Shear Reinforcement				
	Nominal Shear Strength provided by F	Reinforcement (According to Eq. 11-2 of A	ACI318),	
	V -	$\frac{V_u \cdot \Phi^* V_c}{\Phi}$	=	27.4 kips	
	V _s =	Φ	-	27.4 Kips	
	Maximum Allowable Shear Strength p	rovided by Reinforcement (According to $\sqrt{f_{a}} * b * d$	CI.11.4	.7.9 of ACI318),	
	V _{s_max} =	$8^{*}\lambda^{*}\frac{\sqrt{f_{c}^{*}b^{*}d}}{1000}$	=	68.5 kips	
	$IF(V_s > V_{s_{max}}; "Increase Beam Dimentions")$	nsion"; "OK")	=	ОК	
	Spacing of Provided Stirrups, s=	V *o *1000		5.0 in	
	Required Area of Reinforcement, A _v =	$\frac{v_s \times 1000}{f_v * d}$	=	0.21 in ²	
	Minimum Area of Reinforcement (Acco	•			
	Λ -	$\frac{0.75^*\sqrt{f_c}*b*s}{f_y}$	=	0.06 in ²	
	A _{v_min1} =	f _y	-	0.00 11	
	A _{v_min2} =	$\frac{50^{\circ}b^{\circ}s}{f_{v}}$	=	0.07 in ²	
	A _{v_min} =	, MAX(A _{v_min1} ; A _{v_min2})	=	0.07 in ²	
	Required Area of Reinforcement, Avc_	_{Req} =MAX(A _v ; A _{v_min})	=	0.21 in ²	
	Provided Reinforcement, Bar=	SEL("ACI/Bar"; Bar;)	=	No.3	
	Provided Reinforcement, A _{sb} =	TAB("ACI/Bar"; Asb; Bar=Bar)	=	0.11 in ²	
	Number of Stirrups, n=			1	
	Provided Area of Reinforcement, Avc_	_ _{Prov} = A _{sb} * n * 2	=	0.22 in ²	
	Check Validity=	$IF(A_{vc_Prov} \ge A_{vc_Req}; "Valid"; "Invalid")$	=	Valid	
Determine Maximum Permissible Spacing of Stirrups					
	Allowable Shear Strength provided by	Reinforcement for Spacing Limit (Accord	ling to (CI.11.4.5.3 of ACI318),	
	V _{s_limit} =	$4 \star \lambda^{\star} \frac{\sqrt{f_c \star b \star d}}{1000}$	=	34.3 kips	
	Factor for Maximum Spacing of Stirrup	os, Fac= IF(V _s ≤V _{s_limit} ;1;0.5)	=	1.0	
	Maximum Spacing of Stirrups (Accord	ing to Cl.11.4.5.1 of ACI318),			
	s _{max} =	MIN(d / 2;24) * Fac	=	8.00 in	
	Check Validity=	IF(s≤s _{max} ;"Valid"; "Invalid")	=	Valid	
Design Summary					
	Provided Area of Shear Reinforcement	nt, A _{vc_Prov} = A _{vc_Prov}	=	0.22 in ²	
	Spacing of Stirrups, s=	 S	=	5.00 in	

Calculation of Deflection of Shored Nonprestressed Simple Support Concrete Composite Section

As per ACI318-11 Chapter 9

System

Beam Span, L=			26.0 ft
Beam Spacing, S=			8.0 ft
Width of Precast Beam, b=			12.0 in
Depth of Precast Beam, h=			20.0 in
Thickness of Cast in Situ Slab, h _f =			4.0 in
Area of Tension Reinforcement for Pre	cast Beam, A _s =		3.00 in ²
Concrete Cover for Precast Beam, co=			2.5 in
Effective Width of Slab, b _{e1} =	L*12 / 4	=	78.0 in
Effective Width of Slab, b _{e2} =	S*12	=	96.0 in
Effective Width of Slab, b _{e3} =	16*hf + b	=	76.0 in
Effective Width of Slab, b _e =	$MIN(b_{e1}; b_{e2}; b_{e3})$	=	76.0 in
Material Properties			

Concrete Strength of Cast in Situ Slab, f' _{c1} =	3000 psi
Concrete Strength of Precast Beam, f' _{c2} =	4000 psi
Yield Strength of Reinforcement, f _y =	40000 psi
Modulus of Elasticity of Reinforcement, E _s =	29000000 psi
Modification Factor for Lightweight Concrete, $\lambda =$	1.00
Concrete Density, w _c =	150 psi

L	0	а	d

Load					
	Superimposed	Dead Load, SDL=			10.00 psf
	Live Load, LL=				75.00 psf
	Dead Load per	⁻ Unit Length for Slab, w _{d1} =	SDL*S + w _c *S*12*h _f /144	=	480.0 lb/ft
	Dead Load per	Unit Length for Beam, w _{d2} =	w _c *b*h/144	=	250.0 lb/ft
	Live Load per l	Unit Length, w _l =	LL*S	=	600.0 lb/ft
	Percentage of	Sustained Live Load, Sus=			20 %
	Bending Mome	ent of Dead Load 1, M _{D1} =	1/1000 * w _{d1} *L ² /8	=	40.6 kip*ft
	Bending Mome	ent of Dead Load 2, M _{D2} =	1/1000 * w _{d2} *L ² /8	=	21.1 kip*ft
	Bending Mome	ent of Live Load, M _L =	1/1000 * w _l *L ² /8	=	50.7 kip*ft
	Bending Mome	ent of Sustained Load, M _{sus} =	M _{D1} + M _{D2} + (Sus/100) * M _L	=	71.8 kip*ft
Calcul	ation of Modula	ar Ratio			
	For Cast in Situ	u Slab:			
	Modulus of Ela	sticity of Concrete (According	to Cl. 8.5.1 of ACI318),		
	E _{c1} =	$w_{c}^{1.5} * 33* \sqrt{f_{c1}}$		=	3320561 psi
	Modulus of rup	ture (According to Eq. 9-10 of	f ACI318), $f_{r1} = 7.5^* \lambda^* \sqrt{f_{c1}}$	=	411 psi
	For Precast Be	eam:			
	Modulus of Ela	sticity of Concrete (According	to Cl. 8.5.1 of ACI318),		
	E _{c2} =	$w_{c}^{1.5} * 33* \sqrt{f_{c2}}$		=	3834254 psi
	Modulus of rup	ture (According to Eq. 9-10 of	FACI318), $f_{r2} = 7.5^* \lambda^* \sqrt{f_{c2}}$	=	474 psi
	n _c =	E _{c2} / E _{c1}		=	1.15
	n _s =	E _s / E _{c2}		=	7.56
	Width of Slab o	considering relative Concrete	Strength, bs= be/n _c	=	66.09 in
Calcul	ation of Momer	nt of Inertia for Cracked Sec	tion		
	For Precast Be	eam			
	Effective Depth	n of Section, d=			17.5 in
	I _{g1} =	b*h ³ /12		=	8000 in ⁴
	B=	$b/(n_s^*A_s)$		=	0.53 1/in
	kd=	$\sqrt{2 d + B + 1} - 1$		=	6.5 in
	-	В			
	I _{cr1} =	$\frac{b^{*}kd^{3}}{3} + n_{s}^{*}A_{s}^{*}(d-kd)^{2}$		=	3842.8 in ⁴

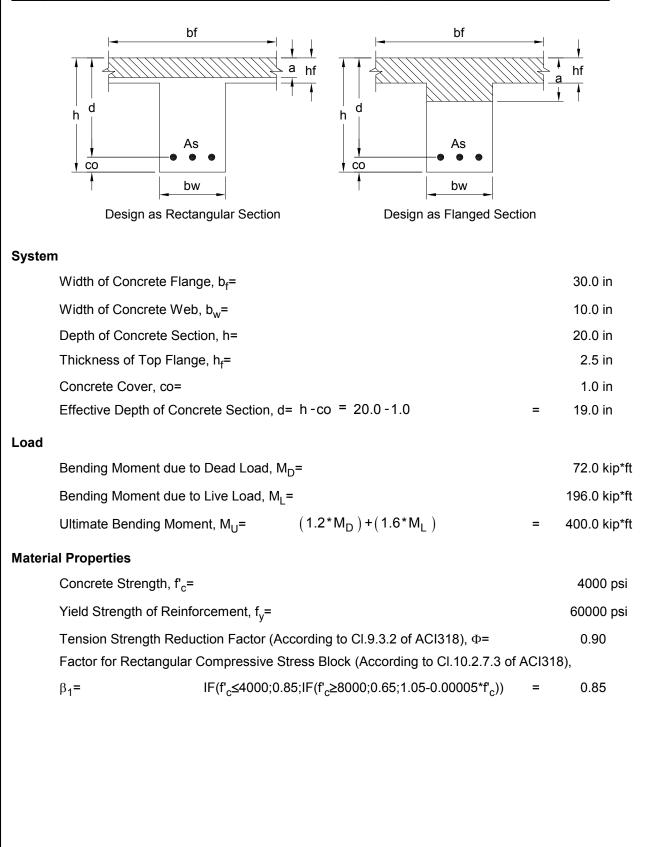
Chapter 1: Concrete Design Deflection of Shored Composite Section

Page: 26

ACI 318

For Composite Section Effective Depth of Section, d= (h+hf) - co 21.5 in = h1 = h + hf 24.0 in = bs1 = bs - b 54.1 in = Distance from Centroidal Axis of Gross Section to Tension Face, $1 + \frac{1}{2} +$ yt= = 16.3 in $\frac{bs1*hf^{3}}{12} + \frac{b*h1^{3}}{12} + bs1*hf*\left(h + \frac{hf}{2} - yt\right)^{2} + b*h1*\left(yt - \frac{h1}{2}\right)^{2} = 26468.49 \text{ in}^{4}$ $I_{q2} =$ $bs/(n_s *As)$ B= 2.91 1/in $\frac{\sqrt{2*d*B+1}-1}{B}$ kd= 3.5 in $\frac{\mathrm{bs}^{*}\mathrm{kd}^{2}}{2} + \mathrm{n_{s}}^{*}\mathrm{As}^{*}(\mathrm{d}-\mathrm{kd})^{2}$ 8292.9 in⁴ I_{cr2}= $\left(\frac{I_{g1}}{I_{g2}} + \frac{I_{cr1}}{I_{ar2}}\right)/2$ Ratio between Cracking & Gross Inertia, r= 0.383 Cracking Moment (According to Eq. 9-9 of ACI318), $\frac{f_{r2} * I_{g1}}{h/2 * 12000}$ Cracking Moment for Beam Section, M_{cr1}= 31.60 kip*ft = $\frac{f_{r2} * I_{g2}}{vt * 12000}$ Cracking Moment for Beam Section, M_{cr2} = = 64.14 kip*ft Effective Moment of Inertia for Composite Section, $\left(\frac{M_{cr1}}{M_{D1}+M_{D2}}\right)^{3} * I_{g1} + \left(1 - \left(\frac{M_{cr1}}{M_{D1}+M_{D2}}\right)^{3}\right) * I_{cr1}$ I_{e1,2}= 4401 in⁴ $\left(\frac{M_{cr2}}{M_{D1} + M_{D2} + M_{L}}\right)^{3} * I_{g2} + \left(1 - \left(\frac{M_{cr2}}{M_{D2} + M_{D2} + M_{L}}\right)^{3}\right) * I_{cr2}$ 11670 in⁴ I_{ed.I}= Check Validity= IF(I_{e1.2}<I_{g1}; "Valid"; "Invalid") Valid = **Short Term Deflection** Short Term Deflection of composite section Due to Dead Load,

$$\Delta_{i1,2} = \frac{5^{*}(M_{D1} + M_{D2})^{*}L^{2} \times 12^{3}}{48^{*}E_{c2}^{*}I_{g2}^{}/1000} = 0.074 \text{ in}$$



Page	: 2

	I		
Deflection Due to Shrinkage			
For Simple Span, Ksh=			0.125
$\rho = \frac{A_s * 100}{A_s * 100}$		=	1.16 %
ρ=b*d		-	1.10 %
(According to Fig.10-3 of PCA Note or			0.789
Time Dependant Shrinkage Strain, ϵ_{sh}	$_{t}$ = 400*10 ⁻⁶	=	0.00040
Deflection Due to Shrinkage, Δ_{sh} =	$0.64 \text{Ksh} \text{Ash}_{\epsilon_{sht}} \text{L}^2 \text{12}^2 \text{r/h}$	=	0.047 in
Deflection Due to Creep			
For No Compression Reinforcement F	actor of, k _r =		0.85
Average Creep Coefficient (According	to CI.2.3.4 of ACI435), Cu=		1.67
Deflection Due to Creep, Δ_{cp} =	$Cu^* \Delta_{i1,2} k_r$	=	0.105 in
Deflection Due to Live Load			
Deflection Due to Live Load , $\Delta_{\rm l}$ =	$\frac{5^{*}(M_{D1}^{+}+M_{D2}^{+}+M_{L}^{-})^{*}L^{2}^{*}12^{3}}{48^{*}E_{c2}^{-*}I_{ed,l}^{-}/1000}\cdot_{\Delta_{i1,2}}$	=	0.232 in
_			
Deflection Due to Creep Sustained Liv	re Load, $\Delta_{cp, L} = Cu^* \frac{Sus}{100}^* \Delta_L^* k_r$	=	0.066 in
Total Long Term Deflection			
Total Deflection, Δ_u =	$\Delta_{i1,2}$ *3.53 + Δ_{sh} + Δ_{cp} + Δ_{L}	=	0.65 in
Calculation Summary			
Total Deflection, Δ_u =	$\Delta_{i1,2}$ *3.53 + Δ_{sh} + Δ_{cp} + Δ_{L}	=	0.65 in

Design of Flanged Section with Tension Reinforcement only as per ACI 318-11 Chapters 9 & 10

ACI 318 Page: 29

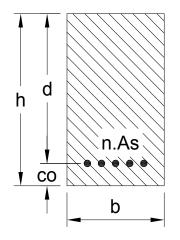
Design as	Flanged	Section
-----------	---------	---------

-	-			
Co	ompressive Strength of Flange, C _f =	$0.85 * f'_c * h_f * \frac{b_f - b_w}{1000}$	=	170.0 kips
Ar	rea of Reinforcement for Flange in Con	npression, $A_{sf} = \frac{C_f}{f_y} * 1000$	=	2.83 in ²
No	ominal Moment for Flange, M _{nf} =	$\frac{A_{sf} * f_{y}}{12000} * \left(d - \frac{h_{f}}{2} \right)$	=	251.2 kip*ft
No	ominal Moment for Web, M _{nw} =	M_U/Φ - M_{nf}	=	193.24 kip*ft
R _r	-wr	$\frac{M_{nw} * 12000}{\Phi * b_{w} * d^{2}}$	=	713.7 psi
ρ _w	v=	$0.85 * f'_{c} / f_{y} * \left(1 - \sqrt{1 - \frac{2 * R_{nw}}{0.85 * f'_{c}}}\right)$	=	0.0135
Ar	rea of Reinforcement for Web in Comp	pression, A_{sw} = $\rho_w * b_w * d$	=	2.56 in ²
Re	equired Area of Reinforcement, A_{s_T} =	$A_{sf} + A_{sw}$	=	5.39 in ²
De	epth of Rectangular Stress Block for W	/eb, $a_w = \frac{A_{sw} * f_y}{0.85 * f_c * b_w}$	=	4.52 in
Design as	Rectangular Section			
R _r	ı=	$\frac{M_{U}^{*}12000}{\Phi^{*}b_{f}^{*}d^{2}}$	=	492.46 psi
ρ=	-	$0.85*\frac{f_{c}^{\prime}}{f_{y}}*\left(1-\sqrt{1-\frac{2*R_{n}}{0.85*f_{c}^{\prime}}}\right)$	=	0.0089
Ar	rea of Reinforcement, A _{s_R} =	$\rho * b_f * d$	=	5.07 in ²
De	epth of Rectangular Stress Block, a=	$\frac{A_{s_R} f_y}{0.85 f_c b_f}$	=	2.98 in

Chapter 1: Concrete Design Flexural Design of Flanged Section

ACI 318 Page: 30

Section Type and Reinforcement			
Section Design as: IF(a>h _f ; "Flang	ged Sec."; "Rectangular Sec.")	=	Flanged Sec.
Area of Reinforcement, A _s =	IF(a>h _f ; A _{s_T} ; A _{s_R})	=	5.39 in ²
Minimum Area of Reinforcement (Acco	rding to CI.10.5 of ACI318),		
A _{s_min1} =	$\frac{3*\sqrt{f_c}*b_f*d}{fy}$	=	1.80 in ²
A _{s_min2} =	$\frac{200^* b_f * d}{fy}$	=	1.90 in ²
A _{s_min} =	MAX(A _{s_min1} ; A _{s_min2})	=	1.90 in ²
Required Area of Reinforcement, A_{sc_R}	$Req = MAX(A_s; A_{s_min})$	=	5.39 in ²
Provided Reinforcement, Bar=	SEL("ACI/Bar"; Bar;)	=	No.10
Provided Reinforcement, A _{sb} =	TAB("ACI/Bar"; Asb; Bar=Bar)	=	1.27 in ²
Number of Bars, n=			5
Vertical Reinforcement, A _{sc_Prov} =	A _{sb} * n	=	6.35 in ²
Check Validity=	IF(A _{sc_Prov} ≥A _{sc_Req} ; "Valid"; "Invalid")	=	Valid
Check Tension Controlled			
Distance from Extreme Compression F	iber to Neutral Axis,		
c=	IF(a>h _f ; $a_w / \beta_1; a / \beta_1$)	=	5.32 in
c/d =	c/d = 5.32/19.0	=	0.280
IF(c/d>0.375; "Add Com. RFT"; "Tensi	on Controlled")	=	Tension Controlled
Design Summary			
Required Area of Reinforcement, A _{sc} =	A _{sc_Prov}	=	6.35 in ²


ACI 318 Page: 31

Cracking Moment Strength for Prestressed Sections as per ACI 318-11 Chapter 18					
h d h d v co b					
System			40.0		
Width of Concrete Section, b= Depth of Concrete Section, h=			12.0 in 24.0 in		
Concrete Cover, co=			24.0 m 2.0 in		
Effective Depth of Concrete Section,	d= h-co = 24.0-2.0	=	22.0 in		
Number of Strands, n=			6.0		
Area of One Strand, A _s =			0.153 in ²		
Material Properties					
Concrete Strength, f' _c =			5000 psi		
Tensile Strength of Prestressed Stee	el, f _{pu} =		270000 psi		
Jacking Stress, J _s =	0.7 * f _{pu}	=	189000 psi		
Percentage of Losses, L _s =			20.00 %		
Modification Factor for Lightweight C	oncrete, λ=		1.00		
Modulus of Rupture (According to Ec	g. 9-10 of ACI318), f _r = $7.5^* \lambda^* \sqrt{f_c}$	=	530 psi		
Calculation of Cracking Moment Strength					
Area of Concrete, A _c =	b * h	=	288.0 in ²		
Concrete Section Modulus, S _b =	b * h ² / 6	=	1152.0 in ³		
Eccentricity of Prestressing, e=	h/2 - co	=	10.0 in		
Effective Prestress Force, P _{se} =	(1-L _s /100) * n * A _s * J _s / 1000	=	138.8 kips		
Cracking Moment Strength, M _{cr} =	$\left(\frac{f_r}{1000} + \frac{P_{se}}{A_c}\right) * \frac{S_b}{12} + P_{se} * \frac{e}{12}$	=	212.8 kip*ft		
Calculation Summary					
Cracking Moment Strength, M _{cr} =	M _{cr}	=	212.8 kip*ft		

Flexural Strength of Prestressed Member

<u>Flexural Strength of Prestressed Member Using Approximate Value of f_{ps} As per ACI 318-11</u>

System

Width of Concrete Section, b=		12.0 in
Depth of Concrete Section, h=		24.0 in
Concrete Cover, co=		2.0 in
Effective Depth of Concrete Section, $d = h - co = 24.0 - 2.0$	=	22.0 in
Number of Strands, n=		6
Area of One Strand, A _s =		0.153 in ²

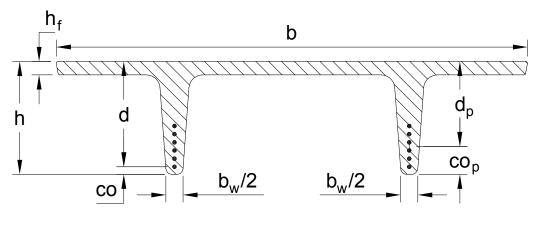
Material Properties

Concrete Strength, f' _c =		5000 psi	
Tensile Strength of Prestressed Steel, f _{pu} =		270000 psi	
Yield Strength of Prestressed Steel, f_{py} = 0.9 * f_{pu}	=	243000 psi	
Factor for Type of Prestressing Steel (According to Cl.18.7.2 of ACl318), $\gamma_{p}\text{=}$		0.28	
Factor for Rectangular Compressive Stress Block (According to CI.10.2.7.3 of ACI318),			
β_1 = IF(f'_c \le 4000; 0.85; IF(f'_c \ge 8000; 0.65; 1.05-0.00005*f'_c))	=	0.80	

Chapter 1: Concrete Design

Flexural Strength of Prestressed Member

ACI 318 Page: 33


Calculation of Stress for Prestressed Reinforcement

Prestress	sed Reinforcement Ratio, ρ_p =	n * A _s / (b * d)	=	0.00348	
Prestress	sing Force (According to Eq. 1	8-1 of ACI318),			
f _{ps} =		$\frac{f_{pu}}{1000}^{*}\left(1-\frac{\gamma_{p}}{\beta_{1}}^{*}\rho_{p}^{*}\frac{f_{pu}}{f_{c}}\right)$	=	252 ksi	
Calculation of N	ominal Moment Strength				
Distance	of Compression Block, a=	$\frac{n^*A_s^*f_{ps}}{0.85^*b^*f_c^{'}/1000}$	=	4.54 in	
Nominal	Moment Strength, M _n =	$\frac{n^*A_s^*f_{ps}}{12}^*\left(d-\frac{a}{2}\right)$	=	380.4 kip*ft	
Calculation Summary					
Nominal	Moment Strength, M _n =	M _n	=	380.4 kip*ft	

Tension Controlled Limit for Prestressed Flexural Member

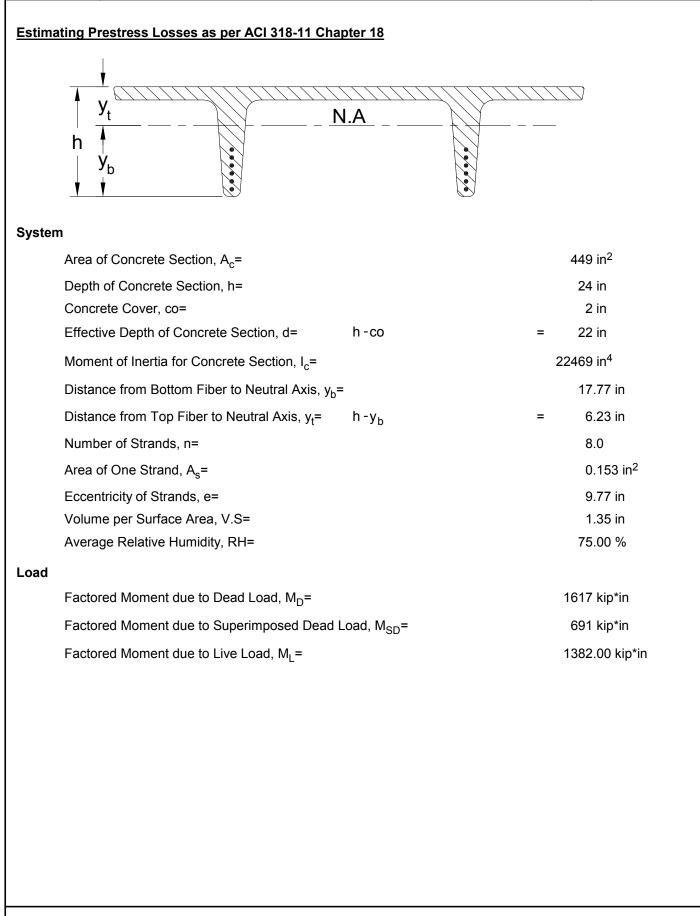
Tension Controlled Limit for Prestressed Flexural Member as per ACI 318-11 Chapters 10 & 18

System

	Width of Concrete Double Tee Section, b=			84.0 in
	Width of Web of Concrete Double Tee Section,	b _w =		15.5 in
	Depth of Concrete Double Tee Section, h=			32.0 in
	Thickness of Concrete Top Slab, h _f =			2.0 in
	Concrete Cover, co=			2.0 in
	Concrete Cover to CG of Prestressed Steel, co	p=		4.5 in
	Effective Depth of Concrete Section, d=	h-co	=	30.0 in
	Effective Depth of Concrete Section, d_p =	h-co _p	=	27.5 in
	Number of Strands, n=			22.0
	Area of One Strand, A _s =			0.153 in ²
Materi	al Properties			
	Concrete Strength, f'c=			5000 psi
	Tensile Strength of Prestressed Steel, f _{pu} =			270000 psi
	Yield Strength of Prestressed Steel, f _{py} =	0.9 * f _{pu}	=	243000 psi
	Factor for Type of Prestressing Steel (According	g to Cl.18.7.2 of ACl318), γ _p =		0.28
	Factor for Rectangular Compressive Stress Block (According to Cl.10.2.7.3 of		ACI3 [,]	18),

 β_1 = IF(f'_c \le 4000; 0.85; IF(f'_c \ge 8000; 0.65; 1.05-0.00005*f'_c)) = 0.80

Chapter 1: Concrete Design Tension Controlled Limit for Prestressed Flexural Member


ACI 318 Page: 35

Calculation of Stress in Prestressed Reinforcement					
ω _{pu} =	(n * A _s) * f _{pu} / (b * d _p * f' _c)		=	0.079	
Prestressing F	orce (According to Eq.18-1 of ACI318),				
f _{ps} =	$f_{pu} * \left(1 - \frac{\gamma_p}{\beta_1} * \omega_{pu} \right)$		=	262535 psi	
Area of Reinfo	rcement for Compression in Flange,				
A _{pf} =	0.85 * h _f * f' _c * (b-b _w) / f _{pu}		=	2.16 in ²	
Calculation of Depth	of Concrete Stress Block				
a _i =	(n * A _s) * f _{ps} / (0.85 * b * f' _c)		=	2.48 in	
For a _i > h _f :					
a ₁ =	(n * A _s - A _{pf}) * f _{ps} / (0.85 * b _w * f' _c)		=	4.81 in	
For $a_i \le h_f$:					
a ₂ =	a _i		=	2.48 in	
a=	IF(a _i >h _f ; a ₁ ; a ₂)		=	4.81 in	
C=	a / β ₁		=	6.01 in	
Check Tension Cont	rolled				
c/d =	c / d = 0.200				
IF(c/d>0.375;	"Compression Controlled"; "Tension Controlled")	=	Tension	Controlled	
Calculation Summary	1				
Type of Section	n:				
IF(c/d>0.375;	"Compression Controlled"; "Tension Controlled")	=	Tension	Controlled	

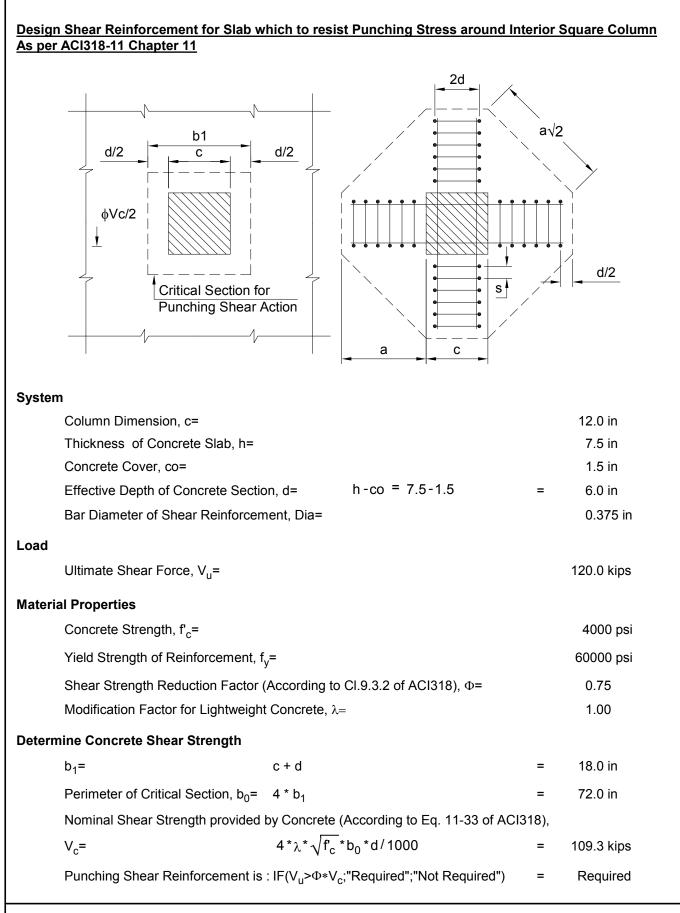
Chapter 1: Concrete Design

Prestress Losses

Prestress Losses

Material Properties			
Concrete Strength, f' _{ci} =			3500 psi
Concrete Strength, f' _c =			5000 psi
Tensile Strength of Prestressed Steel,	f _{pu} =		270000 psi
Yield Strength of Prestressed Steel, f_{py}	y= 0.9 * f _{pu}	=	243000 psi
Jacking Stress, J _s =	0.74 * f _{pu}	=	199800 psi
Modification Factor for Lightweight Cor	ncrete, λ=		1.00
Modulus of Rupture (According to Eq.	9-10 of ACI318), $f_r = 7.5^* \lambda^* \sqrt{f_c}$	=	530 psi
Concrete Density, w _c =			150 psi
Modulus of Elasticity of Concrete (Acco	ording to Cl. 8.5.1 of ACI318),		
Modulus of Elasticity for Initial Concret	. , .	=	3586616 psi
Modulus of Elasticity for Concrete, E_c =	$w_{c}^{1.5} * 33^{*} \sqrt{f_{c}}$	=	4286826 psi
Modulus of Elasticity of Prestressed St	eel, E _s =		28500000 psi
Calculation of Losses			
1- Elastic Shortening of Concrete (ES)			
Initial Force of Prestress, P _{pi} =	J _s * (n * A _s)/1000	=	244.6 kips
Prestress Type=	SEL("ACI/Kes" ;Type;)	=	Pretensioned
K _{es} =	TAB("ACI/Kes" ;Kes ;Type=Type)	=	1.00
K _{cir} =	TAB("ACI/Kcir" ;Kcir ;Type=Type)	=	0.90
f _{cir} =	$K_{cir} * \left(\frac{P_{pi}}{A_c} + \frac{P_{pi}}{I_c} * e^2 \right) - \frac{M_D * e}{I_c}$	=	0.722 ksi
Elastic Shortening of Concrete, ES=	K _{es} *E _s *f _{cir} /E _{ci}	=	5.74 ksi
2- Creep of Concrete (CR)			
Prestress Type=	SEL("ACI/Kcr" ;Type;)	=	Pretensioned
Factor of, Kcr=	TAB("ACI/Kcr" ;Kcr ;Type=Type)	=	2.00
Creep Losses, CR=	$K_{cr} * \frac{E_s}{E_c} * \left(f_{cir} - M_{SD} * \frac{e}{I_c} \right)$	=	5.61 ksi
3- Shrinkage of Concrete (SH)			
Prestress Type=	SEL("ACI/Ksh" ;Type;)	=	Pretensioned
Factor of, K _{sh} =	TAB("ACI/Ksh" ;Ksh ;Type=Type)	=	1.00
Shrinkage Losses, SH= $8.2 \times 10^{-6} \times K_s$	h* $\frac{E_s}{1000}$ *(1-0.06 * V.S)*(100-RH)	=	5.37 ksi

Interactive Design Aids for Structural Engineers

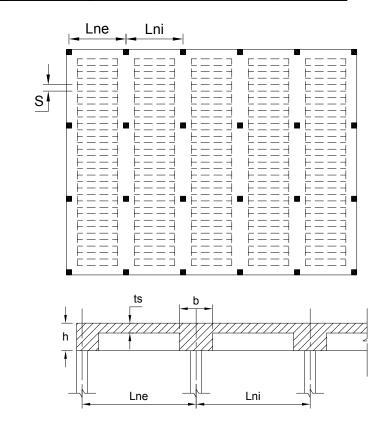

Prestress Losses

4- Relaxation of Tend	4- Relaxation of Tendon (RE)						
Prestress Type=	SEL("ACI/Kre	J" ;Type;)	=	relaxation st	rand-C	Grade	Low 270
Factor of, K _{re} =		TAB("AC	l/KreJ" ;Kre	;Type=Type)	=	Ę	5000 psi
Factor of, J=		TAB("AC	l/KreJ" ;J ;T	ype=Type)	=		0.04
Ratio of f _{pi} /f _{pu} , r=		SEL("ACI	/r" ;r;)		=		0.74
Factor of, C=		TAB("AC	I/r" ;C ;r=r)		=		0.95
Relaxation of Tendon	, RE=	$\left(\frac{K_{re}}{1000}-J\right)$	*(SH+CR	+ES))*C	=		4.11 ksi
5- Total Allowance of	Losses and Effe	ctive Prestre	ess Force af	ter all Losses			
Total Allowance of Lo	sses, L _s =	ES + CR	+SH+RE		=	2	1 ksi
Effective Prestress St	ress, f _{se} =	J _s / 1000	-L _s		=	17	9 ksi
Effective Prestress Fo	orce after All Loss	ses, P _e = fs	se *(n*A _s)	=	21	9 kips
Calculation Summary							
Total Allowance of Lo	sses, L _s =	L	[.] S			=	21 ksi
Effective Prestress Fo	orce after All Loss	ses, P _e = F	e			=	219 kips

Punching Shear Reinforcement on Slab

ACI 318 Page: 39

ACI 318 Page: 40


Detern	nine Area of Shear Reinforcemen	nt		
	Minimum Effective Depth of Slab	with Shear Reinforcement (According to CI.1	1.11.3	3 of ACI318),
	d _{min} =	MIN(6;16*Dia)	=	6.0 in
	Effective Depth of Slab :	IF(d>d _{min} ;"Should Increase";"OK")	=	ОК
	Maximum Shear Strength of Slab	with Shear Reinforcement (According to Cl.	11.11.	3.2 of ACI318),
	V _n =	$6 \sqrt[4]{f_c} + b_0 + d/1000$	=	163.9 kips
	Validity :	IF(V _u >Φ*V _n ;"Not Valid";"Valid")	=	Valid
	Shear Strength provided by Conc	rete with Shear RFT (According to Cl.11.11.3	.1 of A	ACI318),
	V _{ci} =	$2 \star \lambda^{*} \sqrt{f_{c}} b_{0} d/1000$	=	54.6 kips
	Nominal Shear Strength provided	by Reinforcement (According to Eq. 11-2 of A	ACI31	8),
	V _s =	$\frac{V_{u} \cdot \Phi^* V_{ci}}{\Phi}$	=	105.4 kips
	Spacing of Provided Bars, s=			3.0 in
	Required Area of Reinforcement,	$A_{v} = \frac{V_{s} * s * 1000}{f_{y} * d}$	=	0.88 in ²
	Required Area of Reinforcement	for each side of Column, $A_{v_side} = A_v / 4$	=	0.22 in ²
	Perimeter of Critical Section when	e Shear Reinforcement may be terminated,		
	b' ₀ =	$\frac{V_u * 1000}{\Phi * 2 \times \lambda } \sqrt{f_c} * d$	=	210.8 in
	Distance from Column Face when	re Shear Reinforcement may be terminated,		
	a=	$\left(\frac{b_0}{4}-c\right)/\sqrt{2}$	=	28.8 in
Desigi	n Summary			
	Required Area of Reinforcement,	A _v = A _v	=	0.88 in ²
	Distance from Column Face when	re Shear Reinforcement may be terminated: a	- =	28.8 in

One Way Joist

ACI 318 Page: 41

Design of One Way Joist as per ACI 318-11 Chapters 9 & 11

System

Load

Width of Beam, b=		30.0 in
Width of Joist, b _j =		6.0 in
Spacing between Joists, s=		36.0 in
Slab Thickness, t _s =		3.5 in
Exterior Joist Span, L _{ne} =		27.5 ft
Interior Joist Span, L _{ni} =		27.0 ft
Concrete Cover, co=		1.25 in
Dead Load, DL=		130 psf
Live Load, LL=		60 psf
Ultimate Load, w _u =	$\frac{1.2*DL+1.6*LL}{1000}*\frac{s}{12}$	= 0.756 kip/ft

One Way Joist

Material Properties	
Concrete Strength, f' _c =	4000 psi
Yield Strength of Reinforcement, f _y =	60000 psi
Tension Strength Reduction Factor (According to Cl.9.3.2 of A	ACI318), Φ= 0.90
Modification Factor for Lightweight Concrete, $\lambda =$	1.00
Factor for Rectangular Compressive Stress Block (According	to Cl.10.2.7.3),
β_1 = IF(f'_c \le 4000; 0.85; IF(f'_c \ge 8000; 0.65; 1.05-0.00005*f'_c))	= 0.85
Moment Distribution for Joist	
1. End Span	
Edge Negative Moment for Exterior Joist, $M_{nee} = \frac{w_u * L_{ne}^2}{24}$	= 23.8 kip*ft
Positive Moment for Exterior Joist, $M_{pe} = \frac{w_u * L_{ne}^2}{14}$	= 40.8 kip*ft
Negative Moment for Exterior Joist, M_{ne} = $\frac{w_u^*((L_{ne} + 10^{-4}))}{10^{-4}}$	$\frac{(L_{ni})/2}{2} = 56.1 \text{ kip*ft}$
2. Interior Spans	
Negative Moment for Interior Joist, $M_{ni} = \frac{w_u * L_{ni}^2}{11}$	= 50.1 kip*ft
Positive Moment for Interior Joist , $M_{pi} = \frac{w_u * L_{ni}^2}{16}$	= 34.4 kip*ft
3. Maximum Moment	
M _{max} = MAX(M _{nee} ; M _{pe} ; M _{nee}	_e ; M _{ni} ; M _{pi}) = 56.1 kip*ft

One Way Joist

Calculation of Required Depth for Joist

ρ _t =	0.319 * f' _c * β ₁ / f _y	=	0.01808
For Reasonable Deflection Control, cho	pose a Reinforcement Ratio (ρ) equal to	abou	t one-half (ρ_t)
Reinforcement Ratio, p=	ρ _t / 2	=	0.00904
ω=	$\rho * \frac{f_y}{f_c}$	=	0.13560
Required Depth, d=	$\sqrt{\frac{M_{max}{}^{*}12000}{\Phi{}^{*}bj{}^{*}fc{}^{*}\omega{}^{*}(1-0.59{}^{*}\omega)}}$	=	15.8 in
Required Thickness, h _{req} =	d + co	=	17.1 in
h _{min} =	MAX(L _{ne} *12+b; L _{ni} *12+b;)/18.5	=	19.5 in
Provided Thickness, h=	MAX(h _{req} ; h _{min})	=	19.5 in
Effective Depth of Joist, d _j =	h-co	=	18.25 in
Calculation of Required Reinforcement for E	xterior Negative Moment of End Spa	n (A _s	_{c1})
R _{n1} =	$\frac{M_{nee} * 12000}{\Phi * b_j * d_j^2}$	=	159 psi
Reinforcement Ratio, ρ_1 =	$0.85*\frac{f_{c}}{f_{y}}*\left(1-\sqrt{1-2*\frac{R_{n1}}{0.85*f_{c}'}}\right)$	=	0.0027
Area of Reinforcement, A _{s1} =	$\rho_1 * b_j * d_j$	=	0.30 in ²
Minimum Area of Reinforcement (Acco			
A _{s_min1} =	$\frac{3 \sqrt{f_c} b_j d_j}{f_y}$	=	0.35 in ²
A _{s_min2} =	$\frac{200^* b_j^* d_j}{f_y}$	=	0.36 in ²
A _{s_min} =	MAX(A _{s_min1} ; A _{s_min2})	=	0.36 in ²
Required Area of Reinforcement, A _{sc1} =	MAX(A _{s1} ; A _{s_min})	=	0.36 in ²
Provided Reinforcement, Bar=	SEL("ACI/Bar"; Bar;)	=	No.3
Provided Reinforcement, A _{sb} =	TAB("ACI/Bar"; Asb; Bar=Bar)	=	0.11 in ²
Number of Bars, n=			4
Vertical Reinforcement, A _{sc1_Prov} =	A _{sb} * n	=	0.44 in ²
Check Validity=	IF(A _{sc1_Prov} ≥A _{sc1} ; "Valid"; "Invalid")	=	Valid

Chapter 1: Concrete Design One Way Joist

Calcul	Calculation of Required Reinforcement for Positive Moment of End Span (A _{sc2})					
	R _{n2} =	$\frac{M_{pe} * 12000}{\Phi * b_j * d_j^2}$	=	272 psi		
	Reinforcement Ratio, ρ_2 =	$0.85*\frac{f_{c}}{f_{y}}*\left(1-\sqrt{1-2*\frac{R_{n2}}{0.85*f_{c}}}\right)$	=	0.0047		
	Area of Reinforcement, A _{s2} =	$\rho_2 * b_j * d_j$	=	0.51 in ²		
	Minimum Area of Reinforcement (Accor	ding to CI.10.5 of ACI318),				
	A _{s_min1} =	$\frac{3*\sqrt{f_c}*b_j*d_j}{f_y}$	=	0.35 in ²		
	A _{s_min2} =	$\frac{200^* b_j * d_j}{f_y}$	=	0.36 in ²		
	A _{s_min} =	MAX(A _{s_min1} ; A _{s_min2})	=	0.36 in ²		
	Required Area of Reinforcement, Asc2=	MAX(A _{s2} ; A _{s min})	=	0.51 in ²		
	Provided Reinforcement, Bar=	SEL("ACI/Bar"; Bar;)	=	No.5		
	Provided Reinforcement, A _{sb} =	TAB("ACI/Bar"; Asb; Bar=Bar)	=	0.31 in ²		
	Number of Bars, n=			2		
	Vertical Reinforcement, A _{sc2_Prov} =	A _{sb} * n	=	0.62 in ²		
	Check Validity=	IF(A _{sc2 Prov} ≥A _{sc2} ; "Valid"; "Invalid")	=	Valid		
Calcul	ation of Required Reinforcement for In	terior Negative Moment of End Span	(A)		
		M _{ne} *12000	SC3	,		
	R _{n3} =	$\frac{d^{*}b_{j}^{*}d_{j}^{2}}{\Phi^{*}b_{j}^{*}d_{j}^{2}}$	=	374 psi		
	Reinforcement Ratio, ρ_3 =	$0.85 * \frac{f_c}{f_y} * \left(1 - \sqrt{1 - 2 * \frac{R_{n3}}{0.85 * f_c}} \right)$	=	0.0066		
	Area of Reinforcement, A _{s3} =	$ ho_3 * b_j * d_j$	=	0.72 in ²		
	Minimum Area of Reinforcement (Accor	ding to CI.10.5 of ACI318),				
	A _{s_min1} =	$\frac{3*\sqrt{f_c}*b_j*d_j}{f_y}$	=	0.35 in ²		
	A _{s_min2} =	$\frac{200^* b_j * d_j}{f_y}$	=	0.36 in ²		
	A _{s_min} =	MAX(A _{s_min1} ; A _{s_min2})	=	0.36 in ²		
	Required Area of Reinforcement, A _{sc3} =		=	0.72 in ²		
Interactive Design Aids for Structural Engineers						

Provided Reinforcement, Bar=	SEL("ACI/Bar"; Bar;)	=	No.5
Provided Reinforcement, A _{sb} =	TAB("ACI/Bar"; Asb; Bar=Bar)	=	0.31 in ²
Number of Bars, n=			3
Vertical Reinforcement, A _{sc3_Prov} =	A _{sb} * n	=	0.93 in ²
Check Validity=	IF(A _{sc3_Prov} ≥A _{sc3} ; "Valid"; "Invalid")	=	Valid
ation of Required Reinforcement for Ir	nterior Negative Moment of Interior S	Span (A _{sc4})
R _{n4} =	$\frac{M_{ni} * 12000}{\Phi * b_i * d_i^2}$	=	334 psi
Reinforcement Ratio, ρ_4 =	$\Phi^{*} D_{j}^{*} d_{j}$ $0.85 * \frac{f_{c}}{f_{y}} * \left(1 - \sqrt{1 - 2 * \frac{R_{n4}}{0.85 * f_{c}}}\right)$	=	0.0059
Area of Reinforcement, A _{s4} =	ρ ₄ * b _i * d _i	=	0.65 in ²
Minimum Area of Reinforcement (Accor	rding to CI.10.5 of ACI318),		
A _{s_min1} =	$\frac{3 \sqrt{f_c} b_j d_j}{f_y}$	=	0.35 in ²
A _{s_min2} =	$\frac{200^* b_j^* d_j}{f_y}$	=	0.36 in ²
A _{s_min} =	MAX(A _{s_min1} ; A _{s_min2})	=	0.36 in ²
Required Area of Reinforcement, A _{sc4} =	MAX(A _{s4} ; A _{s_min})	=	0.65 in ²
Provided Reinforcement, Bar=	SEL("ACI/Bar"; Bar;)	=	No.5
Provided Reinforcement, A _{sb} =	TAB("ACI/Bar"; Asb; Bar=Bar)	=	0.31 in ²
Number of Bars, n=			3
Vertical Reinforcement, A _{sc4_Prov} =	A _{sb} * n	=	0.93 in ²
Check Validity=	IF(A _{sc4_Prov} ≥A _{sc4} ; "Valid"; "Invalid")	=	Valid

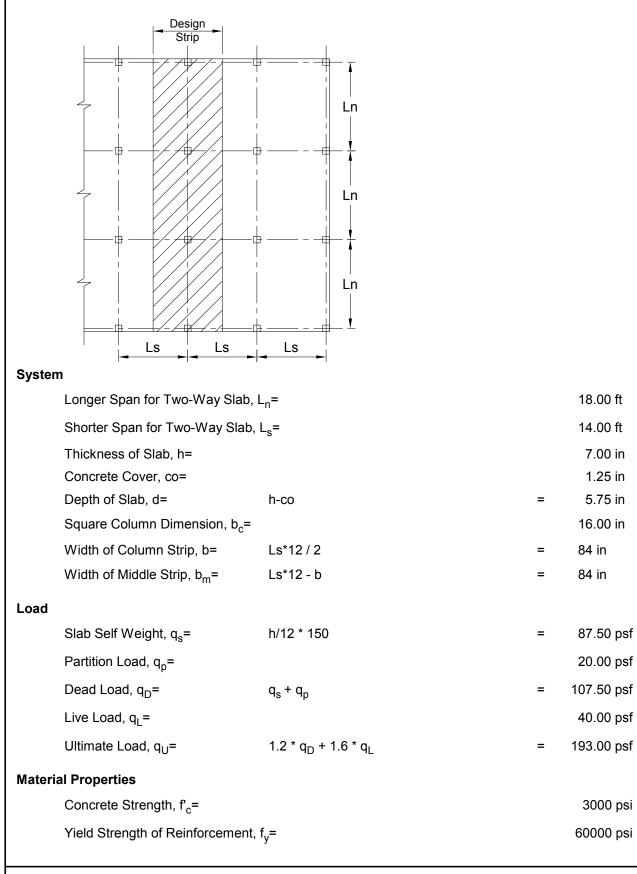
Chapter 1: Concrete Design One Way Joist

0.62 in²

Calculation of Required Reinforcement for I	Calculation of Required Reinforcement for Interior Positive Moment of Interior Span (A _{sc5})					
R _{n5} =	$\frac{M_{pi}*12000}{\Phi*b_{j}*d_{j}^{2}}$		=	230 psi		
Reinforcement Ratio, ρ_5 =	$0.85 * \frac{f_{c}}{f_{y}} * \left(1 - \sqrt{1 - 2 * \frac{R_{f}}{0.85}}\right)$	$\left(\frac{15}{5 \cdot f'_c}\right)$	=	0.0040		
Area of Reinforcement, A _{s5} =	$ ho_5 * b_j * d_j$		=	0.44 in ²		
Minimum Area of Reinforcement (Acco	rding to CI.10.5 of ACI318),					
A _{s_min1} =	$\frac{3*\sqrt{f_c}*b_j*d_j}{f_y}$		=	0.35 in ²		
A _{s_min2} =	$\frac{200^* b_j * d_j}{f_y}$		=	0.36 in ²		
A _{s_min} =	MAX(A _{s_min1} ; A _{s_min2})		=	0.36 in ²		
Required Area of Reinforcement, A _{sc5} =	= MAX(A _{s5} ; A _{s_min})		=	0.44 in ²		
Provided Reinforcement, Bar=	SEL("ACI/Bar"; Bar;)		=	No.5		
Provided Reinforcement, A _{sb} =	TAB("ACI/Bar"; Asb; Bar=B	ar)	=	0.31 in ²		
Number of Bars, n=				2		
Vertical Reinforcement, A _{sc5_Prov} =	A _{sb} * n		=	0.62 in ²		
Check Validity=	IF(A _{sc5_Prov} ≥A _{sc5} ; "Valid"; "	Invalid")	=	Valid		
Design Summary						
Area of Reinforcement for Exterior Neg	ative Moment of End Span:	A _{sc1_Prov}	=	0.44 in ²		
Area of Reinforcement for Positive Mor	nent of End Span:	A _{sc2_Prov}	=	0.62 in ²		
Area of Reinforcement for Interior Nega	ative Moment of End Span:	A _{sc3_Prov}	=	0.93 in ²		
Area of Reinforcement for Interior Nega	ative Moment of Interior Span	A _{sc4_Prov}	=	0.93 in ²		

Interactive Design Aids for Structural Engineers

Area of Reinforcement for Interior Positive Moment of Interior Span: $A_{sc5 Prov}$ =



Two-Way Slab Analyzed by the Direct Design Method

ACI 318

Page: 47

Design Two-Way Slab without Beams Analyzed by the Direct Design Method As per ACI 318-11

Two-Way Slab Analyzed by the Direct Design Method

ACI 318 Page: 48

	_			
	•	or (According to Cl.9.3.2 of ACl318), Φ = ccording to Cl.7.12.2 of ACl318),		0.90
ρ _{min} =		00;0.002;IF(f _y ≥77143;0.0014;0.0018))	=	0.0018
Total Static N	Ioment of Slab			
Total	Factored Static Moment Per	Span (According to Eq. 13-4 of ACI318),		
M ₀ =		$\frac{q_{U}^{*}L_{s}}{8^{*}1000}^{*}\left(L_{n}^{-}\frac{b_{c}^{-}}{12}\right)^{2} =$		93.82 kip*ft
Flexural Rein	forcement Required for Ne	egative Moment of Column Strip		
R _{n1} =		$\frac{M_0 * 12000 * 0.53}{\Phi * b * d^2}$	=	239 psi
Ratio	of RFT, ρ_1 =	$\frac{0.85 * f_c}{f_y} * \left(1 - \sqrt{1 - \frac{2 * R_{n1}}{0.85 * f_c}}\right)$	=	0.00419
Area	of Steel, A _{s1_Req} =	MAX(ρ ₁ ;ρ _{min}) * b * d	=	2.02 in ²
Provid	ded Reinforcement, Bar=	SEL("ACI/Bar"; Bar;)	=	No.6
Provid	ded Reinforcement, A _{sb} =	TAB("ACI/Bar"; Asb; Bar=Bar)	=	0.44 in ²
Numb	per of Bars, n=			5
Vertic	al Reinforcement, A _{s1_Prov} =	A _{sb} * n	=	2.20 in ²
Checl	k Validity=	IF(A _{s1_Prov} ≥A _{s1_Req} ; "Valid"; "Invalid")	=	Valid
Flexural Rein	forcement Required for Po	ositive Moment of Column Strip		
R _{n2} =		$\frac{M_0 * 12000 * 0.31}{\Phi * b * d^2}$	=	140 psi
Ratio	of RFT, ρ_2 =	$\frac{0.85*f_{c}}{f_{y}}*\left(1-\sqrt{1-\frac{2*R_{n2}}{0.85*f_{c}'}}\right)$	=	0.00240
Area	of Steel, A _{s2_Req} =	$MAX(\rho_2;\rho_{min}) * b * d$	=	1.16 in ²
Provid	ded Reinforcement, Bar=	SEL("ACI/Bar"; Bar;)	=	No.6
Provid	ded Reinforcement, A _{sb} =	TAB("ACI/Bar"; Asb; Bar=Bar)	=	0.44 in ²
Numb	per of Bars, n=			3
Vertic	al Reinforcement, A _{s2_Prov} =	A _{sb} * n	=	1.32 in ²
Checl	k Validity=	IF(A _{s2_Prov} ≥A _{s2_Req} ; "Valid"; "Invalid")	=	Valid

Chapter 1: Concrete Design Two-Way Slab Analyzed by the Direct Design Method

ACI 318 Page: 49

Flexural Reinforcement Required for Negative Moment of Middle Strip					
	5	M ₀ *12000*0.17		 .	
	R _{n3} =	$\Phi^{*}b^{*}d^{2}$	=	77 psi	
	Ratio of RFT, ρ_3 =	$\frac{0.85 \text{*fc}}{\text{fy}} \text{*} \left(1 - \sqrt{1 - \frac{2 \text{*} \text{R}_{n3}}{0.85 \text{*fc}}} \right)$	=	0.00130	
	Area of Steel, A _{s3_Req} =	$MAX(\rho_3;\rho_{min})$ * b * d	=	0.87 in ²	
	Provided Reinforcement, Bar=	SEL("ACI/Bar"; Bar;)	=	No.6	
	Provided Reinforcement, A _{sb} =	TAB("ACI/Bar"; Asb; Bar=Bar)	=	0.44 in ²	
	Number of Bars, n=			2	
	Vertical Reinforcement, A _{s3_Prov} =	A _{sb} * n	=	0.88 in ²	
	Check Validity=	IF(A _{s3_Prov} ≥A _{s3_Req} ; "Valid"; "Invalid")	=	Valid	
Flexur	al Reinforcement Required for P	ositive Moment of Middle Strip			
	R _{n4} =	$\frac{M_0 * 12000 * 0.21}{\Phi * b * d^2}$	=	95 psi	
	Ratio of RFT, ρ_4 =	$\frac{0.85 \text{*fc}}{\text{fy}} \text{*} \left(1 - \sqrt{1 - \frac{2 \text{*} \text{R}_{n4}}{0.85 \text{*fc}}} \right)$	=	0.00161	
	Area of Steel, A _{s4_Req} =	$MAX(\rho_4;\rho_{min}) * b * d$	=	0.87 in ²	
	Provided Reinforcement, Bar=	SEL("ACI/Bar"; Bar;)	=	No.6	
	Provided Reinforcement, A _{sb} =	TAB("ACI/Bar"; Asb; Bar=Bar)	=	0.44 in ²	
	Number of Bars, n=			2	
	Vertical Reinforcement, A _{s4_Prov} =	A _{sb} * n	=	0.88 in ²	
	Check Validity=	IF(A _{s4_Prov} ≥A _{s4_Req} ; "Valid"; "Invalid")	=	Valid	
Desig	n Summary				
	Area of Reinforcement Required t	for Negative Moment of Middle Strip,			
	A _{s1_Prov} =	A _{s1_Prov}	=	2.20 in ²	
	Area of Reinforcement Required t	for Negative Moment of Middle Strip,			
	A _{s2_Prov} =	A _{s2_Prov}	=	1.32 in ²	
	Area of Reinforcement Required t	or Negative Moment of Middle Strip,			
	A _{s3_Prov} =	A _{s3_Prov}	=	0.88 in ²	
	Area of Reinforcement Required t	for Positive Moment of Middle Strip,			
	A _{s4_Prov} =	A _{s4_Prov}	=	0.88 in ²	

Development Length of Bars in Tension

Calculating Development Length of Bars in Tension as per ACI 318-11 Chapter 12					
Lab Splice					
	Lab				
Material Properties					
Concrete Strength, f' _c =	=		2	4000 psi	
Yield Strength of Reint				0000 psi	
Modification Factor for		oncrete. λ=		0.75	
	0 0	I on RFT Location (According to CI.12	.2.4 of AC		
ψ _t =				1.30	
Factor of Developmen	t Length Based	I on RFT Coating (According to CI.12.2	2.4 of ACI	318),	
ψ e =				1.50	
Maximum Modifying F	actor, ψ_{te} =	$MIN(\psi_t^*\psi_e; 1.7)$	=	1.70	
Identification of, Bar=		SEL("ACI/Bar" ;Bar;)	=	No.7	
Diameter of Bars, d _b =		TAB("ACI/Bar" ;Dia ;Bar=Bar)	=	0.88 in	
Calculation of Development 1. Class A Splice	-	nd Smaller (According to Cl.12.2.2 of A			
Development Lengtin			(CI310),		
L _{d_A1} =	$\left(\frac{3^*f_y^*\psi_{te}}{50^*\lambda^*\sqrt{f_c'}}\right)$	$-) * d_b$	=	114 in	
Development Length f	or Bars No.7 ar	nd Greater (According to Cl.12.2.2 of A	ACI318),		
L _{d_A2} =	$\left(\frac{3*f_y*\psi_{te}}{40*\lambda^*\sqrt{f_c}}\right)$	=) * d _b	=	142 in	
L _{d_A} =	IF(d _b ≤0.75 ;	L _{d_A1} ; L _{d_A2})	=	142 in	
2. Class B Splice Development Length f		nd Smaller (According to Cl.12.2.2 of A	\CI 318),		
L _{d_B1} =	$\left(\frac{3^* f_y^* \psi_{te}}{50^* \lambda^* \sqrt{f_c}}\right)$	(-) *1.3*d _b	=	148 in	

Developme	Development Length for Bars No.7 and Greater (According to Cl.12.2.2 of ACI318),				
L _{d_B2} =	$\left(\frac{3^* f_y^* \psi_{te}}{40^* \lambda^* \sqrt{f_c}}\right) * 1.3^*$	d _b	=	184 in	
L _{d_B} =	IF(d _b ≤0.75 ; L _{d_B1} ; L	-d_B2)	=	184 in	
Calculation Summ	ary				
Developme	nt Length for Class A, L _{d_A} =	L _{d_A}	=	142 in	
Developme	nt Length for Class B, L _{d_B} =	L _{d_B}	=	184 in	

ACI 318 Page: 52

Group of Headed Studs in Tension Near an Edge as per ACI 318-11 Appendix D

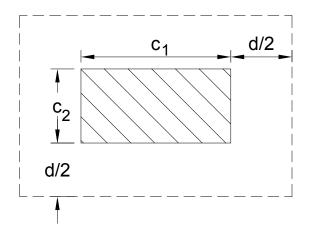
	e B 1.5her	h _{ef} Dia		
System				
	Spacing between Bolts along x-x, B=			6.00 in
	Spacing between Bolts along y-y, L=			6.00 in
	Distance to Edge from Nearst bolt, e=			3.00 in
Load				
	Ultimate Load, P _u =		14(000 lb
	Number of Anchors, n=			4
Materia	l Properties			
	Concrete Strength, f' _c =			4000 psi
	Tensile Strenth of Anchor Bolt Grade, fu	ta ⁼		60000 psi
	Strength Reduction Factor (According to	0 CI.D.4.4.a of ACI318), Φ_1 =		0.75
	Strength Reduction Factor (According to	CI.D.4.4.c of ACI318), Φ_2 =		0.70
	Modification Factor for Lightweight Conc	erete, λ=		1.00
Determ	ine Anchor Diameter			
	Required Effective Area of Anchor Bolt (According to Eq.D.2 of ACI318),		
	A _{se_Req} =	$\frac{P_{u}}{\Phi_{1} * n * f_{uta}}$	=	0.078 in ²
	Provided Anchor Bolt, Dia=	SEL("ACI/Anchor"; Dia;)	=	0.500 in
	Provided Area of Anchor Bolt, Ase_Prov=	TAB("ACI/Anchor"; Ase; Dia=Dia)	=	0.142 in ²
	Check Validity= IF(A _{se_Prov} ≥A _{se}	_ _{Req} ; "Valid"; "Increase Dia")	=	Valid

Chapter 1: Concrete Design Group of Headed Studs in Tension Near an Edge

ACI 318 Page: 53

Determine	Embedment I	Lenath

Deterr	nine Embedment Leng	th			
	Assume that, h _{ef_Prov} =				4.50 in
	Projected Area of Failure Surface for Anchors (According to Cl.D.5.2.1 of ACI318),				
	A_{nc} = (1.5* $h_{ef_{Prov}}$	+L+e)*(1.5*2	2*h _{ef_Prov} +B)	=	307 in ²
	Projected Area of Failu	re Surface for Si	ingle Anchor (According to Cl.D.5.2.1	of AC	1318),
	A _{nco} =	2 9*h _{ef_Prov} 2		=	182 in ²
	Check Validity=	IF(A _{nc} <n*a<sub>nco;</n*a<sub>	"Valid"; "Increase hef")	=	Valid
	Factor (According to C				1.00
	Factor (According to C	I.D.5.2.5 of ACI3	18), $\psi_{ed,N} = 0.7 + \frac{0.3 e}{1.5 h_{ef_Prov}}$	=	0.83
	Factor (According to C	I.D.5.2.6 of ACI3	18), ψ _{c,N} =		1.00
	Factor (According to C	I.D.5.2.6 of ACI3	18), ψ _{cp.N} =		1.00
	Basic Strength of Conc	rete Breakout (A	According to Eq.D-6 of ACI318),		
	N _b =	$24^*\lambda^*\sqrt{fc}^*h_c$	1.5 ef_Prov	=	14490 lb
	Nominal Strength of Concrete Breakout (According to Eq.D-5 of ACI318),				
	N _{cbg} =	A _{nc} A _{nco} [*] Ψec,N [*] V	Ψed,N [*] Ψc,N [*] Ψcp,N [*] N _b	=	20287 lb
	Check Validition=		_g ; "Valid"; "Increase h _{ef} ")	=	Valid
Calcu	lation of Reqired Head	Size			
	Factor (According to C	I.D.5.3.6 of ACI3	18), ψ _{c.P} =		1.00
	Required Head Size fo	r Anchor Bolt (Ad	ccording to Eq.D-15 of ACI318),		
	A _{brg} =		$\frac{Pu/n}{\Phi_2^*\psi_{c,P}*8*fc}$	=	0.156 in ²
Desig	n Summary		,		
-	Diameter of Anchor Bo	lt, Dia=	Dia	=	0.500 in
	Embedment Length of	Anchor Bolt, h _{ef} =	= h _{ef_Prov}	=	4.50 in
	Head Size of Anchor B	olt, A _{brg} =	A _{brg}	=	0.156 in ²



Shear Strength of Slab at Column Support

ACI 318 Page: 54

20 kips

Shear Strength of Slab at Column Support as per ACI 318-11 Chapter 11

System

		48.0 in
		8.0 in
		10.0 in
		3.5 in
t - co	=	6.5 in
	t - co	t - co =

Load

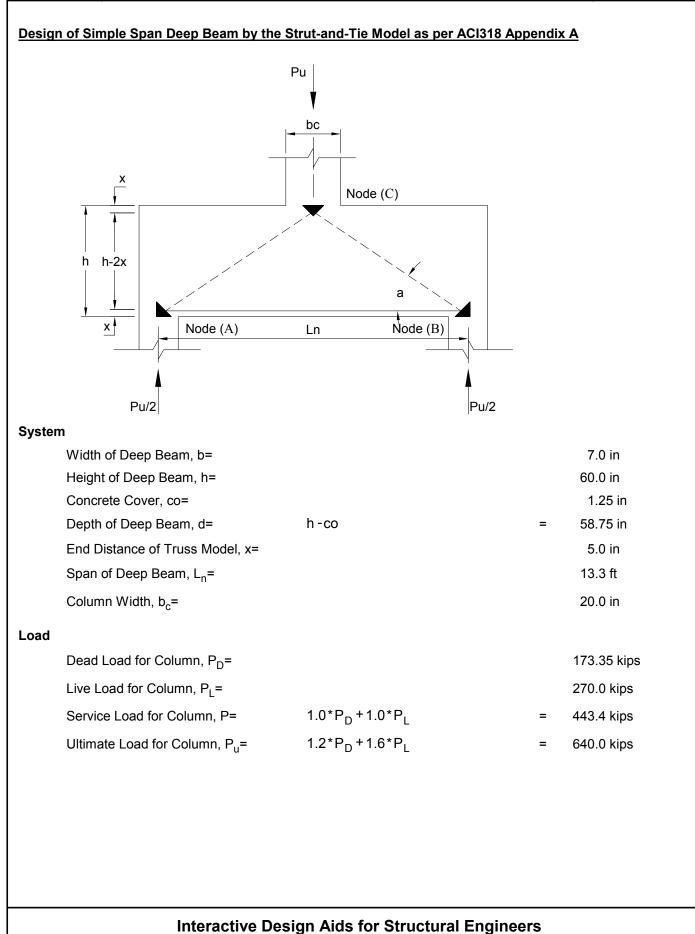
Ultimate Shear Force, V_u=

Material Properties

Concrete Strength, f' _c =	4000 psi
Shear Strength Reduction Factor (According to CI.9.3.2 of ACI318)), Ф= 0.75
Modification Factor for Lightweight Concrete, $\lambda =$	1.00

Check Slab Thickness

Perimeter of Critical Section for Two-Way Shear, $b_0 = 2*(c_1+d)+2*(c_2+d)$			138 in
Column Type=	SEL("ACI/Alfa S";Type;)	=	Interior
Alfa Constant, α_s =	TAB("ACI/AlfaS"; Alfa; Type=Type)	=	40.00
Ratio of Long to Short Col	umn Dimensions, $\beta = MAX(c_1;c_2)/MIN(c_1;c_2)$	=	6.00
Concrete Shear Strength	(According to Eq. 11-31 of ACI318),		
V _{c1} = (2	$2+4/\beta)^{*}\lambda^{*}\sqrt{f_{c}}^{*}b_{0}^{*}d/1000$	=	151.3 kips
Concrete Shear Strength (According to Eq. 11-32 of ACI318),			
V _{c2} = ($\alpha_{s} * d/b_{0} + 2) * \lambda * \sqrt{fc} * b_{0} * d/1000$	=	220.3 kips


Chapter 1: Concrete Design Shear Strength of Slab at Column Support

ACI 318 Page: 55

Concrete Shear Streng	Concrete Shear Strength (According to Eq. 11-33 of ACI318),				
V _{c3} =	$4 * \lambda * \sqrt{f_c} * b_0 * d / 1000$	=	226.9 kips		
Nominal Concrete She	Nominal Concrete Shear Strength, $\Phi V_c = \Phi * MIN(V_{c1}; V_{c2}; V_{c3})$		113.5 kips		
Validation =	IF($\Phi V_c > V_u$; "O.K."; "Increase Depth")	=	O.K.		
Calculation Summary					
Thickness of Slab, t=	t	=	10 in		

Simple Span Deep Beam by Strut-and-Tie Model

Material Properties Concrete Strength, f'c= 4000 psi Yield Strength of Reinforcement, fv= 60000 psi 0.75 Strength Reduction Factor (According to CI.9.3.2 of ACI318), Φ = Modification Factor for Lightweight Concrete, $\lambda =$ 1.00 Friction Factor (According to Cl.11.6.4.3 of ACI318), μ = 1.4* λ 1.40 = **Check Deep Beam Requirments** Check on Height of Deep Beam Requirements (According to Cl.11.7.1 of ACI318), R = IF(12*Ln/h<4; "Deep Beam Design"; "Normal Beam Design") = Deep Beam Design **Estimation of Truss Model** $\sqrt{\left(\frac{L_n^* 12}{2}\right)^2 + (h - 2^* x)^2}$ Length of Diagonal Strut, L1= 94.17 in $\frac{P_u}{2} * \frac{L1}{h - 2 * x}$ The Force in Diagonal Strut, Fs= 602.69 kips = $\frac{P_u}{2} * \frac{0.5*L_n*12}{h-2*x}$ The Force in Horizontal Tie, Ft= 510.72 kips = Angle Between Diagonal Strut and Horizontal Tie, $\alpha = \operatorname{atan}\left(\frac{h-2*x}{0.5*L_**12}\right)$ 32.07 ° = Check Validity (According to Cl.A.2.5 of ACI318)= $IF(\alpha>25; "Valid"; "Invalid")$ Valid = **Calculation of Effective Concrete Strength** (According to Cl.3.2.2(a) of ACI318) Factor of, β_s = 0.75 Effective Concrete Strength (According to Eq.A-3 of ACI 318), f_{ce1}= 0.85 * βs * f'c 2550 psi **Calculation of Effective Concrete Strength for Nodal Zones** For Nodal Zone C Bounded by Three Struts (C-C-C Nodal Zone) (According to Cl.A.5.2.1 of ACI318) Factor of, β_n = 1.00 Effective Concrete Strength (According to Eq.A-3 of ACI 318), $0.85 * \beta_n * f'_c$ 3400 psi f_{ce2}= For Nodal Zone A&B Bounded by Three Struts (C-C-T Nodal Zone) (According to Cl.A.5.2.2 of ACI318) Factor of, β_n = 0.80 Effective Concrete Strength (According to Eq.A-3 of ACI 318), $0.85 * \beta_n * f'_c$ 2720 psi f_{ce3}= = Minimum Effective Concrete Strength, f_{ce} = MIN(f_{ce1} ; f_{ce2} ; f_{ce3} ;) 2550 psi =

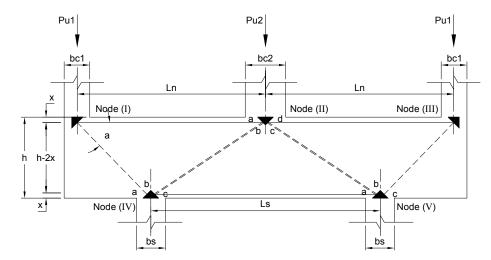
Chapter 1: Concrete Design Simple Span Deep Beam by Strut-and-Tie Model

ACI 318 Page: 58

Check Strength at No	de C			
The Length of	The Horizontal Face o	of Nodal Zone C,		
	P _u *1000			
Lhc=	$\overline{\Phi^*b_c^*f_{ce}}$		=	16.73 in
The Length of	Other Faces of Nodal	Zone C,		
Lc=	Lhc* <mark>Fs</mark> P ₁₁		=	15.75 in
20-	P _u		_	10.70 11
heck Strength at No	de A&B			
The Length of	The Horizontal Face of	of Nodal Zone A,		
Lha=	Ft*1000		=	13.35 in
	$\Phi^* b_c^* f_{ce}$			
Width of Node	••	00		
La=	$\frac{0.5*P_u*10}{\Phi*b_c*f_{ce}}$		=	8.37 in
eleviation VI and II	0 00			
1. Vertical Rein		Resist Splitting Diagonal Struts		
	orcement, Bar=	SEL("ACI/Bar"; Bar;)	=	No.4
	orcement, A _{sbv} =	TAB("ACI/Bar"; Asb; Bar=Bar)	=	0.20 in ²
Number of Bar				4
Vertical Reinfor	·	A _{sbv} * n _v	=	0.80 in ²
	ng between Bars, s=	SDV V		11.00 in
	rcement (According to	$\Delta = 6 \Lambda A$ of $\Lambda C (3.18)$		
		A _{sv}		
VL=		$\frac{b^{*}}{b_{c} * s} * \sin(90 - \alpha)$	=	0.00308
2. Horizontal R	einforcement			
Provided Reinf	orcement, Bar=	SEL("ACI/Bar"; Bar;)	=	No.5
Provided Reinf	orcement, A _{sbh} =	TAB("ACI/Bar"; Asb; Bar=Bar)	=	0.31 in ²
Number of Bar	s, n _h =			2
Vertical Reinfor	rcement, A _{sh} =	A _{sbh} * n _h	=	0.62 in ²
Provided Spaci	ng between Bars, s=			11.00 in
Horizontal Rein	forcement (According	g to Eq.A4 of ACI318),		
HZ=		$\frac{A_{sh}}{b_c * s} * sin(\alpha)$	=	0.00150
Check Validity=	=	F(VL+HZ>0.003; "Valid"; "Invalid")	=	Valid

Simple Span Deep Beam by Strut-and-Tie Model

ACI 318 Page: 59


Calculation of Tension Reinforcement for Tie Connecting Node A&B

Required Reinforcement Area, A _{sreq} =	$\frac{Ft^*1000}{\Phi^*fy}$	=	11.35 in ²
Provided Reinforcement, Bar=	SEL("ACI/Bar"; Bar;)	=	No.8
Provided Reinforcement, A _{sb} =	TAB("ACI/Bar"; Asb; Bar=Bar)	=	0.79 in ²
Number of Bars, n=			16
Total Provided Area, A _{sprov} =	n*A _{sb}	=	12.64 in ²
Check Validity=	IF(Asprov>Asreq; "Valid"; "Invalid")	=	Valid
Design Summary			
Provided Vertical Reinforcement, A _{sv} =	A _{sv}	=	0.80 in ²
Provided Horizontal Reinforcement, Ash	= A _{sh}	=	0.62 in ²
Provided Tension Reinforcement, A _{sprov}	= A _{sprov}	=	12.64 in ²

Continuous Deep Beam by Strut-and-Tie Model

Design of Continuous Deep Beam by the Strut-and-Tie Model as per ACI318 Appendix A

System

-				
	Width of Deep Beam, b=			24.0 in
	Height of Deep Beam, h=			144.0 in
	Concrete Cover, co=			1.25 in
	Depth of Deep Beam, d=	h-co	=	142.75 in
	Upper End Distance of Truss Model, x ₁ =			6.0 in
	Lower End Distance of Truss Model, x_2 =			9.0 in
	Span of Deep Beam, L _n =			24.0 ft
	Exterior Planted Column Width, b _{c1} =			24.0 in
	Interior Planted Column Width, b _{c2} =			56.0 in
	Distance between Supports of Deep Beam, $\rm L_{s}\text{=}$			24.0 ft
	Support Column Width, b _s =			48.0 in
	Support Column Depth, d _s =			24.0 in
Load				
	Dead Load for Exterior Column, P _{D1} =			100.0 kips
	Live Load for Exterior Column, P _{L1} =			237.5 kips
	Ultimate Load for Exterior Column, P _{u1} =	1.2*P _{D1} +1.6*P _{L1}	=	500.0 kips
	Dead Load for Interior Column, P _{D2} =			750.0 kips
	Live Load for Interior Column, P_{L2} =			1000.0 kips
	Ultimate Load for Interior Column, P _{u2} =	1.2*P _{D2} +1.6*P _{L2}	=	2500.0 kips
	Support Column Ultimate Load, P _u =	P _{u1} + P _{u2} /2	=	1750.0 kips

Material Properties					
Concrete Strength, f' _c =				4000 psi	
Yield Strength of Reinforceme	nt, f _y =			60000 psi	
Strength Reduction Factor (Ac	cording to CI.9.3.2 of ACI31	8), Φ =		0.75	
Modification Factor for Lightwe	eight Concrete, $\lambda =$			1.00	
Friction Factor (According to C	Cl.11.6.4.3 of ACI318), μ=	1.4* λ	=	1.40	
Check Deep Beam Requirements					
Check on Height of Deep Bea	m Requirements (According	to Cl.11.7.1 of A	CI318),		
R = IF(12*Ln/h<4; "Deep Bea	m Design"; "Normal Beam D	esign") =	Deep Be	eam Design	
Calculation of Effective Concrete St	rength				
(According to CI.A.3.2 of ACI3	18) Factor of, β _s =			1.00	
Effective Concrete Strength (A	According to Eq.A-3 of ACI 3	18),			
f _{ce1} = 0.85 *	$\beta_{s} * f_{c}$		=	3400 psi	
Calculation of Effective Concrete St	rength for Nodal Zones				
For Nodal Zone IV Bounded b	y Three Struts (C-C-C Nodal	Zone)			
(According to CI.A.5.2.1 of AC	I318) Factor of, β _n =			1.00	
Effective Concrete Strength (A	Effective Concrete Strength (According to Eq.A-3 of ACI 318),				
f _{ce2} = 0.85 *	^κ β _n * f' _c		=	3400 psi	
For Nodal Zone A&B Bounded	I by Three Struts (C-C-T Noc	lal Zone)			
(According to CI.A.5.2.2 of AC	I318) Factor of, β _n =			0.80	
Effective Concrete Strength (A	According to Eq.A-3 of ACI 3	18),			
f _{ce3} = 0.85 *	^ϵ β _n * f' _c		=	2720 psi	
Minimum Effective Concrete S	Strength, f _{ce} = MIN(f _{ce1} ;	f _{ce2} ; f _{ce3} ;)	=	2720 psi	
Calculation of Forces in Struts					
For Node IV Will Carry Exter	ior Column Load Strut, Fa= F	o u1	=	500.00 kips	
For Node IV Other Struts B a	nd C, Fbc= 0).5*(P _u -Fa)	=	625.00 kips	
Check Width of Struts at Node IV					
Width of Strut a, Wsa=	$\frac{Fa*1000}{\Phi*f_{ce}*b}$		=	10.21 in	
Width of Strut b&c, Wsbc=	$\frac{Fbc^*1000}{\Phi^*f_{ce}*b}$		=	12.77 in	
Total Width of Struts, Ws=	Wsa+Wsbc *2		=	35.75 in	
Check Validity=	IF(Ws <b<sub>s; "Valid"; "Invalid</b<sub>	l")	=	Valid	

Chapter 1: Concrete Design Continuous Deep Beam by Strut-and-Tie Model

ACI 318 Page: 62

Check	Width of Struts at Node I				
	Width of Strut, WsI=	$\frac{P_{u1}*1000}{\Phi*f_{ce}*b}$		=	10.21 in
	Check Validity=	IF(WsI <b<sub>c1; "Valio</b<sub>	d"; "Invalid")	=	Valid
Check	Width of Struts at Node II				
	Width of Strut, WsII=	$\frac{P_{u2} * 1000}{\Phi * f_{ce} * b}$		=	51.06 in
	Check Validity=	IF(WsII <b<sub>c2; "Vali</b<sub>	d"; "Invalid")	=	Valid
Calcul	ation of Force in Strut I-IVa and	d Tie I-lla			
	Horizontal Projection of Strut I-I	Va, Lhiiva=	$\frac{(L_n * 2 - L_s) * 12}{2}$ -Wsbc	=	131.23 in
	Vertical Projection of Strut I-IVa	i, Lviiva=	$h - (x_1 + x_2)$	=	129.00 in
	Horizontal Force in Strut I-IVa a	nd Tie I-IIa, Fiiva=	P _{u1} * Lhiiva Lviiva	=	508.64 kips
	Length of Strut I-IVa, Liiva=		$\sqrt{\text{Lhiiva}^2 + \text{Lviiva}^2}$	=	184.02 in
	Compression Force in Strut I-IV	∕a at Node I, Fi=	$\frac{P_{u1} * Liiva}{h \cdot (x_1 + x_2)}$	=	713.26 kips
	Check Validity=	IF(Fi <f<sub>ce; "Valid"; '</f<sub>	"Invalid")	=	Valid
Calcul	ation of Width of Strut Ila-IVb				
	Horizontal Projection of Strut Ila	a-IVb, Lhiiaivb=	$\frac{(\text{Ln*2-Ls})^*\text{12}}{2} \frac{\text{Wsll*3}}{8}$	=	124.9 in
	Vertical Projection of Strut IIa-IV	/b, Lviiaivb=	$h - (x_1 + x_2 + 2)$	=	120.0 in
	Vertical Force in Strut IIa-IVb, F	iiaivb=	Fiiva* <mark>Lhiiaivb</mark> Lviiaivb	=	529.4 kips
Calcul	ation of Width of Strut IIa-IVc				
	Horizontal Projection of Strut Ila	a-IVb, Lhiiaivb=	$\frac{(L_n * 2 - L_s) * 12}{2} - \frac{WsII * 3}{8}$	=	124.9 in
	Vertical Projection of Strut IIa-IV	/b, Lviiaivb=	$h - (x_1 + x_2 + 2)$	=	120.0 in
	Vertical Force in Strut IIa-IVb, F	iiaivb=	Lhiiaivb Fiiva*———	=	529.4 kips

Chapter 1: Concrete Design Continuous Deep Beam by Strut-and-Tie Model

ACI 318 Page: 63

alculation of Width of Strut Ilb-IVc Horizontal Projection of Strut II	a-IVh I hiisivh=	$\frac{(L_n * 2 - L_s) * 12}{2}$	Vsll *7 =	136.9 in
	a-ivo, Lilliaivo-	2	50 -	130.3 11
Vertical Projection of Strut IIa-I	Vb, Lviiaivb=	$h - (x_1 + x_2 + 2)$	=	120.0 in
Vertical Force in Strut IIa-IVb, F	-iiaivb=	Fi* Lviiaivb	=	813.7 kips
alculation of Width of Tie IVc-Va				
Force in Tie IVc-Va, Fivcva=		$\frac{Fiiaivb*1000}{\Phi^*f_{ce}^*b}$	=	16.62 in
alculation VL. and HZ. Reinforceme	ent to Resist Split	tting of Diagonal Str	uts	
1. Vertical Reinforcement				
Angle of Strut, α =				46.60 ^o
Provided Reinforcement, Bar=	SEL("AC	CI/Bar"; Bar;)	=	No.5
Provided Reinforcement, A _{sbv} =	TAB("AC	CI/Bar"; Asb; Bar=Bar)) =	0.31 in ²
Number of Bars, n _v =				2
Vertical Reinforcement, A _{sv} =	A _{sbv} * n _v	1	=	0.62 in ²
Provided Spacing between Bar	s, s=			10.00 in
Vertical Reinforcement (Accord	ling to Eq.A4 of AC	CI318),		
VL=	A _{sv} b*s	$n(90-\alpha)$	=	0.00177
2. Horizontal Reinforcement				
Provided Reinforcement, Bar=	SEL("AC	Cl/Bar"; Bar;)	=	No.5
Provided Reinforcement, A _{sbh} =	TAB("AC	CI/Bar"; Asb; Bar=Bar)	=	0.31 in ²
Number of Bars, n _h =				2
Vertical Reinforcement, A _{sh} =	A _{sbh} * n _r	1	=	0.62 in ²
Provided Spacing between Bar				10.00 in
Horizontal Reinforcement (Acc	ording to Eq.A4 of	ACI318),		
HZ=	A _{sh} b*s	$n(\alpha)$	=	0.00188
Check Validity=	IF(VI +HZ>0 003	; "Valid"; "Invalid")	=	Valid

Continuous Deep Beam by Strut-and-Tie Model

ACI 318 Page: 64

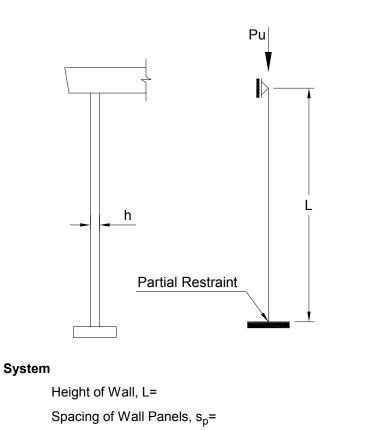
Calculation of Tension Reinforcement for Tie Connecting Joint I-Ila

Required Reinforcement Area, A	$A_{sreq} = \frac{Fiiva*1000}{\Phi*fy}$	=	11.30 in ²
Provided Reinforcement, Bar=	SEL("ACI/Bar"; Bar;)	=	No.9
Number of Bars, n=			12.00
Provided Reinforcement, A _{sb} =	TAB("ACI/Bar"; Asb; Bar=Bar)	=	1.00 in ²
Total Provided Area, A _{sprov} =	n*Asb	=	12.00 in ²
Check Validity=	IF(Asprov>Asreq; "Valid"; "Invalid")	=	Valid
Design Summary			
Provided Vertical Reinforcemen	nt, A _{sv} = A _{sv}	=	0.62 in ²
Provided Horizontal Reinforcem	nent, A _{sh} = A _{sh}	=	0.62 in ²
Provided Tension Reinforcemer	nt, A _{sprov} = A _{sprov}	=	12.00 in ²

ACI 318 Page: 65

Roughened as per ACI 318-11 Chapte	r 12		
t Tf Bf x Lf	Dowels Bars (Avf)		
System			
Column Width, b _c =			12.0 in
Column Depth, d _c =			12.0 in
Footing Width, B _f =			9.0 ft
Footing Length, L _f =			9.0 ft
Footing Thickness, T _f =			22.0 in
Load			
Ultimate Horizontal Force at the	Base of Column, V _u =		84.0 kips
Material Properties			
Concrete Strength, f' _c =			4000 psi
Yield Strength of Reinforcement	t, f _y =		60000 psi
Shear Strength Reduction Factor	or (According to CI.9.3.2 of ACI318), Φ =		0.75
Modification Factor for Lightweig	ght Concrete, $\lambda =$		1.00
Friction Factor (According to Cl.	11.6.4.3 of ACI318), μ = 0.6* λ	=	0.60
Check on Maximum Shear Transfer P	ermitted		
Nominal Shear Force (According			
ΦV_{n1} =	$\Phi^{*}(0.2^{t}f_{c}^{\prime}/1000^{t}b_{c}^{t}d_{c})$	=	86.4 kips
ΦV _{n2} =	$\Phi^{*}(800^{*}b_{c}^{*}d_{c}^{-})/1000$	=	86.4 kips
Minimum Nominal Shear, ΦV_n =	ΜΙΝ(ΦV _{n1} ; ΦV _{n2} ;)	=	86.4 kips
Check Validity=	IF(Vu<ΦV _n ; "Valid"; "Increase Dimension")	=	Valid

ACI 318 Page: 66


	Required Area of Reinforcement (Acc	ording to Eq.11-25 of ACI318).		
		Vu*1000		
	A _{vf} =	$\frac{\Phi^* f y^* \mu}{\Phi^* f y^* \mu}$	=	3.11 in ²
	Provided Shear Reinforcement, Bar=	SEL("ACI/Bar"; Bar;)	=	No.8
	Diameter of Bars, Dia=	TAB("ACI/Bar"; Dia; Bar=Bar)	=	1.0000 in
	Number of Bars, n=			4
	Provided Area of Reinforcement, A _s =	$n^* \frac{\pi^* \text{Dia}^2}{2}$	=	3.14 in ²
	· · · ·	4		
	Check Validity= IF(A _s	>A _{vf} ; "Valid"; "Increase RFT")	=	Valid
Check	on Development Length of Tensile F	Reinforcement with Column		
	Clear Cover to Center of Bars, c=			3.25 in
	Center to Center Bar Spacing, S=			4.50 in
	Factor of, cb=	MIN(c+Dia/2; S/2)	=	2.25 in
	(According to Cl.12.2.3 of ACI318) Fac	ctor of, Ktr=		0.00
	(According to Cl.12.2.4 of ACI318) Fac	ctor of, Ψ_t =		1.00
	(According to Cl.12.2.4 of ACI318) Fac	ctor of, Ψ_{e} =		1.00
	(According to Cl.12.2.4 of ACI318) Fac	ctor of, Ψ_s =		1.00
Develo	opment Length within Column			
	Development Length (According to Eq	.12-1 of ACI318),		
	3 fy	$\Psi_t^*\Psi_e^*\Psi_s$		
	$L_{d1} = \frac{1}{40} \frac{1}{\sqrt{10}} \frac{1}{\sqrt{10}$	Ψt [*] Ψe [*] Ψs cb + Ktr)/Dia [*] Dia	=	31.6 in
Devel	opment Length within Footing			
	Development Length (According to Cl.	12.5.2 of ACI318),		
	$L_{d2} = \frac{0.02^* \Psi_e^* fy}{\lambda^* \sqrt{fc}}$	*Dia	=	19.0 in
	λ για			
Desig	n Summary			
	Provided Area of Reinforcement, A_s =	A _s	=	3.14 in ²
	Development Length within Column, L	_{d1} = L _{d1}	=	31.6 in
	Development Length within Footing, L	_{d2} = L _{d2}	=	19.0 in

Bearing Wall by Empirical Method

Design of Bearing Wall by Empirical Method as per ACI 318-11 Chapters 10 & 14

Width of Stem for Bearing Wall, b_w=

15 ft
8 ft
7 in

Load

Service Dead Load, P _D =			28 kips
Service Live Load, P _L =			14 kips
Ultimate Load, P _u =	1.2*P _D +1.6*P _I	=	56 kips

Material Properties

Concrete Strength, f' _c =	4000 psi				
Bearing Strength Reduction Factor (According to CI.9.3.2 of ACI318), Φ =	0.65				
Modification Factor for Lightweight Concrete, λ =	1.00				
Determine Wall Thickness					
Assume Wall Thickness, h=	7.5 in				
Minimum Wall Thickness, h _{min} = MAX(L*12/25 ; 4) =	7.2 in				

Check Validation = IF(h> h_{min}; "O.K."; "Increase Thickness") = O.K.

Bearing Wall by Empirical Method

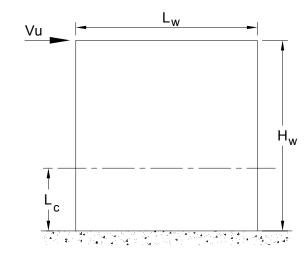
ACI 318 Page: 68

Loaded Area, A ₁ =	h * b _w	=	52.50 in ²
·	acity (According to Cl.10.14.1 of ACI318),		02.00 m
ΦV_{h} =	$\Phi * 0.85 * f'_{c} * A_1 / 1000$	=	116 kips
Check Validation =	$IF(\Phi V_{b} > P_{I}; "Valid."; "Invalid")$	=	Valid.
ulate Design Strength of Wall			
Effective Width of Wall, w=	MIN(b _w +4*h ; s _p *12)	=	37 in
Wall Resistant Type,	$(0_{W}, 4_{W}, 3_{p}, 1_{2})$		07 11
Type-1 : Restrained Rotation -	One or Both Ends (T/B/Both)		
Type-2 : Unrestrained Rotation			
Type-3 : For Walls not Braced	Against Lateral Translation		
Туре=	SEL("ACI/K" ;Type;)	=	Type-1
Effective Length Factor, K=	TAB("ACI/K" ;K ;Type=Type)	=	0.80
Nominal Strength of Wall (Acco	ording to Eq.14-1 of ACI 318),		
	$1 - \left(\frac{K + L + 12}{L}\right)^2$		
ΦP _n =	$0.55^{*} \Phi^{*} f_{c}^{i} w^{*} h^{*} \frac{1 - \left(\frac{K^{*}L^{*}12}{32^{*}h}\right)^{2}}{1000}$	=	254 kips
Check Validity=	IF(ΦP _n >P _u ;"Valid" ;"Invalid")	=	Valid
ermine Single Layer of Reinforce	nent		
Vertical Area of Reinforcement	for Wall (According to Cl.14.3.2 of ACI318),		
A _{sv} =	0.0012 * 12 * h	=	0.108 in ² /1
Provided Reinforcement, Bar=	SEL("ACI/Bar"; Bar;)	=	No.4
Provided Reinforcement, A _{sb} =	TAB("ACI/Bar"; Asb; Bar=Bar)	=	0.20 in ²
Bar Spacing, s=			18 in
A _{sv Prov} =	A _{sb} *12/s	=	0.13 in ²
_ Check Validity=	IF(A _{sv_Prov} >A _{sv} ; "Valid"; "Invalid")	=	Valid
	ent for Wall (According to Cl.14.3.3 of ACI318),		
A _{sh} =	0.0020 * 12 * h	=	0.180 in ² /
Provided Reinforcement, Bar=		=	No.4
		=	0.20 in ²
Provided Reinforcement A =			
Provided Reinforcement, A _{sb} =			12 in
Provided Reinforcement, A _{sb} = Bar Spacing, s= A _{sh Prov} =	A _{sb} *12/s	=	12 in 0.20 in ²

Bearing Wall by Empirical Method

ACI 318 Page: 69

Design Summary


Wall Thickness, h=	h	=	8 in
Length of Footing, L=	L	=	15 ft
Vertical Area of Reinforcement	for Wall, A _{sv_Prov} = A _{sv_Prov}	=	0.13 in ²
Horizontal Area of Reinforcem	ent_for Wall, A _{sh_Prov} = A _{sh_Prov}	=	0.20 in ²

Shear Design of Wall

Shear Design of Wall as per ACI 318-11 Chapter 11

System

Height of Wall, h _w =			12.0 ft
Width of Wall, L _w =			8.0 ft
Over All Wall Depth, d=	0.8 * L _w	=	6.4 ft
Thickness of Wall, h=			8.0 in
Concrete Cover, co=			2.0 in
Effective Depth of Wall Section, d_c =	h-co = 8.0-2.0	=	6.0 in

Load

Ultimate Bending Moment, M _u =	19200 kip*ft
Ultimate Shear Force, V _u =	200 kips
Ultimate Normal Force, N _u =	0 kips

Material Properties

Concrete Strength, f' _c =	3000 psi
Yield Strength of Reinforcement, f _y =	60000 psi
Shear Strength Reduction Factor (According to CI.9.3.2 of ACI318), Φ =	0.75
Modification Factor for Lightweight Concrete, $\lambda =$	1.00

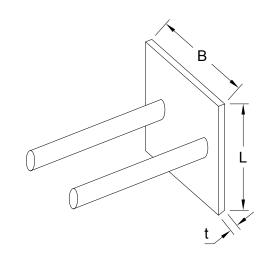
ACI 318 Page: 71

Shear Design of Wall

Check Shear Reinforcement Requirement								
Maximum Shear Strength of Wall (According to Cl.11.9.3 of ACI318),	Maximum Shear Strength of Wall (According to Cl.11.9.3 of ACI318),							
ΦV_{n} = $\Phi^{*}10^{*}\sqrt{f_{c}}^{*}h^{*}d^{*}12/1000$	=	252 kips						
Check Validity= IF($V_u \leq \Phi V_n$; "Valid"; "Invalid")	=	Valid						
Critical Section of Shear Force, $L_c = MIN(L_w/2;h_w/2)$		4.00 ft						
Concrete Shear Strength (According to Eq.11-27 of ACI318),								
$V_{c1} = 3.3 \times \lambda^{*} \sqrt{f_{c}} \times \frac{h \times d \times 12}{1000} + \frac{N_{u} \times d}{4 \times Lw}$	=	111 kips						
Concrete Shear Strength (According to Eq.11-28 of ACI318),								
$V_{c2} = \left(\frac{L_{w} * 12 * \left(1.25 * \lambda * \sqrt{f_{c}} + \frac{0.2 * N_{u}}{L_{w} * 12 * h} \right)}{M_{u} / V_{u} - L_{w} * 12 / 2} \right) * \frac{h * d}{100}$	* 12)0 =	104 kips						
Concrete Shear Strength, V_c = MIN(V_{c1} ; V_{c2})	=	104 kips						
Shear Reinforcement: IF($V_u < \Phi * V_c/2$;"Not Required" ;"Required	") =	Required						
Determine Horizontal Shear Reinforcement								
Identification of, Bar= SEL("ACI/Bar" ;Bar;)	=	No.4						
Provided Reinforcement, A _{sb} = TAB("ACI/Bar"; Asb; Bar=Bar)	=	0.20 in ²						
Number of Bars, n=		2						
Area of Shear Reinforcement, A _h = n * A _{sb}	=	0.40 in ²						
Spacing between Bars (According to Eq.11-29 of ACI318),	Spacing between Bars (According to Eq.11-29 of ACI318),							
s_{hi} = $\frac{\Phi^* fy/1000^* d^* 12^* A_h}{V_u - \Phi^* V_c}$	=	11.3 in						
Provided Reinforcement Spacing, s _h =		10 in						
Check Validity= IF(s _h ≤s _{hi} ; "Valid"; "Invalid")	=	Valid						
Ratio of Horizontal Shear Reinforcement (According to Cl.11.9.9.2 of ACI3	18),							
$ \rho_{hi} = \frac{A_h}{h * s_h} $	=	0.005						
ρ _h = MAX(ρ _{hi} ; 0.0025)	=	0.005						

ACI 318 Page: 72

Shear Design of Wall


Calculation of Vertical Shear Reinforcement
Ratio of Vertical Shear Reinforcement (According to Eq.11-30 of ACI318),
(h)

	ρ _{vi} =	$0.0025 + 0.5*\left(2.5 - \frac{h_w}{L_w}\right)*(\rho_h - 0.0)$	025)	=	0.0037			
	ρ _v =	MAX(ρ _{vi} ; 0.0025)		=	0.0037			
	Identification of, Bar=	SEL("ACI/Bar" ;Bar;)		=	No.4			
	Provided Reinforcement, A _{sb} =	TAB("ACI/Bar"; Asb; Bar=Bar)		=	0.20 in ²			
	Number of Bars, n=				2			
	Area of Shear Reinforcement, A	A _v = n * A _{sb}		=	0.40 in ²			
	Spacing between Bars (Accord							
	s _{vi} =	$\frac{A_v}{\rho_v * h} = \frac{0.40}{0.0037 * 8.0}$		=	13.5 in			
	Provided Reinforcement Spacing, s _v =				13 in			
	Check Validity=	IF(s _v ≤s _{vi} ; "Valid"; "Invalid")		=	Valid			
Design Summary								
	Horizontal Shear Reinforcement, A _h = A _h			=	0.40 in ²			
	Spacing Between Horizontal Shear Reinforcement, $s_h = s_h$ s_h Vertical Shear Reinforcement, $A_v = A_v$			=	10 in			
				=	0.40 in ²			
	Spacing Between Horizontal Shear Reinforcement, $s_v = s_v$				13 in			

Shear Friction

Design of Shear Friction as per ACI 318-11 Chapter 11

System

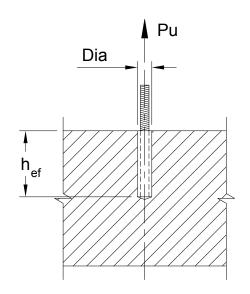
	Width of Steel Plate, B=			2.00 in
	Length of Steel Plate, L=			4.00 in
	Thickness of Steel Plate, t=			0.25 in
	Identification of, Bar=	SEL("ACI/Bar" ;Bar;)	=	No.3
	Diameter of Bars, d _b =	TAB("ACI/Bar" ;Dia ;Bar=Bar)	=	0.38 in
	Number of Bars, n=			2
Load				
	Ultimate Shear Force, V _u =			3570 lb
Materi	al Properties			
	Concrete Strength, f' _c =			4000 psi
	Yield Strength of Reinforcement, fy=			60000 psi
	Shear Strength Reduction Factor (Acco	ording to Cl.9.3.2 of ACI318), Φ =		0.75
	Modification Factor for Lightweight Con	crete, $\lambda =$		0.75
	Friction Factor (According to Cl.11.6.4.	3 of ACI318), μ = 0.7 * λ	=	0.525

Chapter 1: Concrete Design

Shear Friction

Calculation of Required Reinforcement Area

Area of Shear Friction Reinforcement (According to Eq.11-25 of ACI318),


A _{vf} =	$\frac{V_u}{\Phi^* f y^* \mu}$	=	0.151 in ²
Provided Area, A _{act} =	$n^* \frac{\pi^* d_b^2}{4}$	=	0.23 in ²
Check Validity=	IF(A _{act} >A _{vf;} "Valid" ; "Invalid")	=	Valid
Design Summary			

Provided Area of Reinforcement, Aact=	A _{act}	=	0.23 in ²
---------------------------------------	------------------	---	----------------------

Single Adhesive Anchor in Tension

Design a Single Adhesive Anchor in Tension Away from Edges as per ACI 318-11 Appendix D

System

Diameter of Adhesive Anchor Bolt, Dia= SEL("ACI/Anchor"; Dia;)	=	0.500 in
Area of Adhesive Anchor Bolt, A _{se_N} = TAB("ACI/Anchor"; Ase; Dia=Dia)	=	0.142 in ²
Effective Embedment Length, h _{ef} =		4.0 in

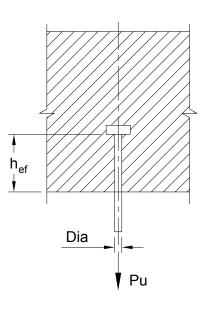
Material Properties

Concrete Strength, f' _c =	4000 psi
Characteristic Bond Stress in Cracked Concrete, τ_{cr} =	300 psi
Characteristic Bond Stress in Uncracked Concrete, τ_{uncr} =	1000 psi
Tensile Strength of Anchor Bolt Grade, f _{uta} =	58000 psi
Strength Reduction Factor (According to CI.D.4.4.a of ACI318	8), Φ_1 = 0.75
Strength Reduction Factor (According to Cl.D.4.4.c of ACI318	8), Φ ₂ = 0.45
Modification Factor for Lightweight Concrete, λ =	1.00
Determine The Steel Strength of Adhesive Anchor	
The Steel Strength of Anchor Bolt (According to Cl.D.4.1.1 of	ACI318),
ΦN_{sa} = $\Phi_1 * A_{se_N} * f_{uta}$	= 6177 lb

Chapter 1: Concrete Design Single Adhesive Anchor in Tension

ACI 318 Page: 76

Determin	e The Bond Strength of Adh	esive Anchor			
	-	8), c _{Na} = 10*Dia* $\sqrt{\tau_{uncr} / 1100}$		=	4.77 in
	(According to Eq.D-20 of ACI318), $A_{Nao} = (2 * c_{Na})^2$			_	01.0 = 2
(<i>A</i>	According to Eq.D-20 of ACI31	8), $A_{Nao} = (2 C_{Na})$		=	91.0 in ²
(A	According to CI.D.5.5.1 of ACI3	318), A _{Na} = A _{Nao}		=	91.0 in ²
TI	he Basic Bond Strength (Accord	rding to Eq.D-22 of ACI318),			
Ν	ba ⁼	λ*τ _{cr} *π*Dia*h _{ef}		=	1885 lb
Fa	actor (According to Cl.D.5.5.3	of ACI318), ψ _{ed,Na} =			1.00
Fa	actor (According to Cl.D.5.5.5	of ACI318), ψ _{c,Na} =			1.00
TI	he Basic Bond Strength for A S	Single Anchor (According to Eq.I	D-3 of ACI318),		
Φ	N _a =	$\Phi_2^*(A_{Na}/A_{Nao})^*\psi_{ed,Na}^*\psi_{c,Na}^*N_b$	а	=	848 lb
Determin	e The Concrete Breakout St	rength			
(A	According to Eq.D-6 of ACI318), κ _c =			17.0
B	Basic Strength of Concrete Breakout (According to Eq.D-6 of ACI318),				
N	a ⁼	$\kappa_{c}^{*}\lambda^{*}\sqrt{f_{c}^{*}}*h_{ef}^{1.5}$		=	8601 lb
Fa	actor (According to Cl.D.5.2.6	of ACI318), ψ _{cp,Na} =			1.00
TI	The Strength of Concrete Breakout (According to Eq.D-3 of ACI318),				
Φ	N _{cb} =	$\Phi_2^*(A_{Na}/A_{Nao})^*\psi_{ed,Na}^*\psi_{c,Na}^*\psi_c$	_{p,Na} *N _a	=	3870 lb
Determin	e The Tension Force Carried	by Adhesive Anchor Bolt			
TI	he Tension Force Carried by A	Adhesive Anchor, T_u = MIN(ΦN_{sa}	;ΦN _a ;ΦN _{cb})	=	848 lb
Design S	ummary				
TI	he Steel Strength of Adhesive	Anchor Bolt, ΦN_{sa} =	ΦN_{sa}	=	6177 lb
TI	he Bond Strength of Adhesive	Anchor Bolt, ΦN_a =	ΦN_a	=	848 lb
TI	he Concrete Breakout Strengt	h of Adhesive Anchor Bolt, ΦN_{cb}	= ΦN_{cb}	=	3870 lb
ТІ	he Tension Force Carried by A	Adhesive Anchor, T _u =	Т _и	=	848 lb



Single Headed Anchor Bolt in Tension

ACI 318 Page: 77

7000 lb

Load

Ultimate Load, P_u=

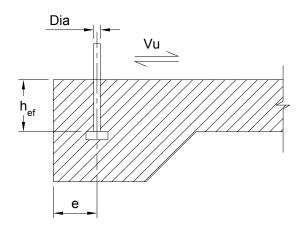
Material Properties

Concrete Strength, f' _c =	4000 psi
Tensile Strength of Anchor Bolt Grade, f _{uta} =	58000 psi
Strength Reduction Factor (According to Cl.D.4.4.a of ACI318), $\Phi_1\text{=}$	0.75
Strength Reduction Factor (According to Cl.D.4.4.c of ACl318), $\Phi_2\text{=}$	0.70
Modification Factor for Lightweight Concrete, $\lambda =$	1.00

Determine Anchor Diameter

Required Effective Area of Anchor Bolt (According to Eq.D.3 of ACI318),

A _{se_Req} =	$\frac{P_u}{\Phi_1 * 1.0 * f_{uta}}$	=	0.161 in ²
Provided Anchor Bolt, Dia=	SEL("ACI/Anchor"; Dia;)	=	0.625 in
Provided Area of Anchor Bolt,	A _{se_Prov} = TAB("ACI/Anchor"; Ase; Dia=Dia)	=	0.226 in ²
Check Validity=	$IF(A_{se_Prov} \ge A_{se_Req}; "Valid"; "Increase Dia")$	=	Valid


Chapter 1: Concrete Design Single Headed Anchor Bolt in Tension

ACI 318 Page: 78

Determine Emended Length		
Factor (According to Cl.D.5.2.6 of ACI318), $\psi_{c,N}$ =		1.00
Effective Embedment Length (According to CI.D.5.2.1 of ACI318),		
$h_{ef_Req} = \left(\frac{P_u}{\Phi_2^* \psi_{c,N}^* 24^* \lambda^* \sqrt{f_c}}\right)^{2/3}$	=	3.51 in
Provided Embedment Length, h _{ef_Prov} =		4.00 in
Check Validity= IF(h _{ef_Prov} ≥h _{ef_Req} ; "Valid"; "Increase h _{ef} ")	=	Valid
Determine Head Size		
Factor (According to Cl.D.5.3.6 of ACl318), $\psi_{c,P}$ =		1.00
Required Head Size for Anchor Bolt (According to Eq.D-15 of ACI318),		
$A_{brg} = \frac{P_u}{\Phi_2^* \psi_{c,P}^* 8^* f'c}$	=	0.313 in ²
Design Summary		
Diameter of Anchor Bolt, Dia= Dia	=	0.625 in
Embedment Length of Anchor Bolt, h _{ef} = h _{ef_Prov}	=	4.00 in
Head Size of Anchor Bolt, A _{brg} = A _{brg}	=	0.313 in ²

Design a Single Headed Anchor Bolt in Shear Near an Edge as per ACI 318-11 Appendix D

System

System			
Edge Distance, e=	1.75 in		
Load			
Ultimate Load, V _u =	700 lb		
Material Properties			
Concrete Strength, f' _c =	4000 psi		
Tensile Strength of Anchor Bolt Grade, f _{uta} =	58000 psi		
Strength Reduction Factor (According to Cl.D.4.4.a of ACI318), Φ_1 =	0.65		
Strength Reduction Factor (According to Cl.D.4.4.c of ACI318), Φ_2 =	0.70		
Modification Factor for Lightweight Concrete, $\lambda =$	1.00		
Determine Anchor Diameter			

Determine Anchor Diameter

Required Effective Area of Anchor Bolt (According to Eq.D.29 of ACI318),

A _{se_Req} =	$\frac{V_u}{\Phi_1 * 1.0 * 0.6 * f_{uta}}$	=	0.031 in ²
Provided Anchor Bolt, Dia=	SEL("ACI/Anchor"; Dia;)	=	0.500 in
Provided Area of Anchor Bolt, A	s _{e_Prov} = TAB("ACI/Anchor"; Ase; Dia=Dia)	=	0.142 in ²
Check Validity=	IF(A _{se_Prov} ≥A _{se_Req} ; "Valid"; "Increase Dia")	=	Valid

Calculation of Embedment Strength

Chapter 1: Concrete Design

ACI 318 Page: 80

Single Headed Anchor Bolt in Shear Near an Edge

lear an Edge	Page

	Assume that, h _{ef_Prov} =				7.00 in
	Ratio A _{vc} /A _{vco} , A'=				1.00
	Factor (According to Cl.D.6 of ACl318), $\psi_{ed,V}$ = Factor (According to Cl.D.6.2.7 of ACl318), $\psi_{c,V}$ =				1.00
					1.00
	Length of Load Bearing of Anch	hor Bolt (Acc	ording to CI.D.6.2.2 of ACI318),		
	l _e =	MIN(h _{ef_Pro}	_{ov} ; 8*Dia;)	=	4.00 in
	Basic Strength of Concrete Bre	akout (Acco	rding to Eq.D-33 of ACI318),		
	$V_{b1} = 7*\left(\frac{I_e}{Dia}\right)^{0.2}*\sqrt{Dia}*\lambda*\sqrt{f_c}*e^{1.5}$		=	1098 lb	
	Basic Strength of Concrete Breakout (According to Eq.D-34 of ACI318),				
	V _{b2} =	$9^*\lambda^*\sqrt{f_c}$	1.5 *e	=	1318 lb
	Basic Strength of Concrete Bre	akout, V _b = N	/IN(V _{b1} ; V _{b2})	=	1098 lb
	Nominal Strength of Concrete I	Breakout (Ac	cording to Eq.D-30 of ACI318),		
	ΦV_{cb} =	A' * Φ_2 * ψ_e	_{ed,V} *ψ _{c,V} *V _b	=	769 lb
	Check Validation=	IF(V _u ≤ΦV _c	_b ; "Valid"; "Invalid")	=	Valid
Design Summary					
	Diameter of Anchor Bolt, Dia=	Dia	a	=	0.500 in
	Embedment Length of Anchor	Bolt, h _{ef} = h _{et}	f_Prov	=	7.00 in

s per ACI 318-11 Chapter 9			
Uniform Dead Load, Uniform Live Load,	5	$ \begin{array}{c c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	
ystem			
Width of Concrete Section, b= Depth of Concrete Section, h= Concrete Cover, co=			12.0 in 22.0 in 2.5 in
Effective Depth of Concrete Section, Depth of Compression Reinforcement		=	19.5 in 2.5 in
Area of Tension Reinforcement, A_s =			1.80 in ²
Area of Compression Reinforcement	t, A _s '=		0.6 in ²
ρ=	As/(b*d)	=	0.0077
ρ'=	As'/(b*d)	=	0.0026
Distance from Centroidal Axis of Gro	oss Section, y _t = h/2	=	11.0 in
Beam Span, L=			25.0 ft
oad			
Uniform Dead Load, w _D =			0.395 kip/ft
Uniform Live Load, w _L =			0.300 kip/ft
Percentage of Sustained Live Load,	Sus=		50 %
Moment due to Dead Load, M_D =	w _D * L² / 8	=	30.9 kip*ft
Moment due to Live Load, M_L =	w _L * L² / 8	=	23.4 kip*ft
Sustained Moment, M _{sus} =	M _D + (Sus/100)*M _L	=	42.6 kip*ft
laterial Properties			
Concrete Strength, f' _c =			3000 psi
Yield Strength of Reinforcement, fy=			40000 psi
Modulus of Elasticity of Reinforceme	nt, E _s =	2	9000000 psi
Modification Factor for Lightweight C	concrete, λ=		1.00
Concrete Density, w _c =			150 psi

Chapter 1: Concrete Design

Deflection of Simple Beam

ACI 318 Page: 82

Properties of Cracked Section

Modulus of Ru	upture (According to Eq. 9-10 of ACI318), $f_r = 7.5^* \lambda^* \sqrt{f_c}$	=	411 psi
Modulus of El	asticity of Concrete (According to Cl. 8.5.1 of ACI318),		
E _c =	$w_{c}^{1.5} * 33^{*} \sqrt{f_{c}}$	=	3320561 psi
$n_s = E_s / E_c$		=	8.7
I _g =	b*h ³ /12	=	10648 in ⁴
B=	b/(n _s *A _s)	=	0.77 in
r=	$\frac{(n_{s} - 1) * As'}{n_{s} * A_{s}}$	=	0.295
kd=	$\frac{\sqrt{2^{d} B^{d} \left(1+r^{d}\right)^{d}+\left(1+r^{d}\right)^{2}}-\left(1+r^{d}\right)}{B}$	=	5.76 in
I _{cr} =	$\frac{b^{*}kd^{3}}{3} + n_{s}^{*}As^{*}(d-kd)^{2} + (n_{s}^{-1})^{*}As^{'*}(kd-d')^{2}$	=	3770 in ⁴

Cracking Moment (According to Eq. 9-9 of ACI318),

$$M_{cr} = f_r * I_g / (y_t * 12000) = 33.2 kip*ft$$

Properties of Effective Section

Effective Moment of Inertia (According to Eq 9-8 of ACI318):

$$I_{e_Dead1=} \qquad \left(\frac{M_{cr}}{M_{D}}\right)^{3} * I_{g} + \left(1 - \left(\frac{M_{cr}}{M_{D}}\right)^{3}\right) * I_{cr} \qquad = 12301 \text{ in}^{4}$$

 I_{e_Dead} = MIN(I_g ; I_{e_Dead1}) = 10648 in⁴

$$I_{e_Sus1} = \left(\frac{M_{cr}}{M_{sus}}\right)^{3} * I_{g} + \left(1 - \left(\frac{M_{cr}}{M_{sus}}\right)^{3}\right) * I_{cr} = 7026 \text{ in}^{4}$$

$$I_{e_Sus} = MIN(I_g; I_{e_Sus1}) = 7026 \text{ in}^4$$

$$I_{e_AII1} = \left(\frac{M_{cr}}{M_{D} + M_{L}}\right)^{2} * I_{g} + \left(1 - \left(\frac{M_{cr}}{M_{D} + M_{L}}\right)^{3}\right) * I_{cr} = 5342 \text{ in}^{4}$$

$$I_{e_AII} = MIN(I_g; I_{e_AII1}) = 5342 \text{ in}^4$$

Deflection of Simple Beam

Short Term Deflection

Δ_{i}	_Dead ⁼	$\frac{5^* M_D^* L^{2} * 12^3}{48^* E_c^* I_{e_Dead} / 1000}$		=	0.098 in
Δ_{i}	_Sus ⁼	$\frac{5^* M_{sus}^* L^2 * 12^3}{48^* E_c^* I_{e_Sus}^2 / 1000}$		=	0.205 in
Δ_{i}	_AII ⁼	$\frac{5^{*}(M_{D}+M_{L})^{*}L^{2}^{*}12^{3}}{48^{*}E_{c}^{*}I_{e_{A}}I_{I}^{2}/1000}$		=	0.344 in
Δ_{i}	_Live ⁼	Δ_{i_AII} - Δ_{i_Dead}		=	0.246 in
Long Term Deflection					
-					
Du		tained loads, Dur: SEL("	ACI/Sustained";Dur;)	= 5 Ye	ears or more
	uration of Sus	· · · · ·	ACI/Sustained";Dur;) bads (According to Cl. 9.5.2.5 of ACI31		ears or more
	uration of Sus me-Depender	nt Factor for Sustained Lo	· · · · · ·		ears or more 2.00
Tiı ξ=	uration of Sus me-Depender =	nt Factor for Sustained Lo TAB("	pads (According to Cl. 9.5.2.5 of ACI31	8):	
Tiı ξ=	uration of Sus me-Depender = ultiplier Factor	nt Factor for Sustained Lo TAB("	pads (According to Cl. 9.5.2.5 of ACI31 ACI/Sustained";x;Dur=Dur;)	8):	
Τίι ξ= Μι λ _Δ	uration of Sus me-Depender = ultiplier Factor _A =	nt Factor for Sustained Lo TAB("	pads (According to Cl. 9.5.2.5 of ACl31 ACl/Sustained";x;Dur=Dur;) n (According to Eq. 9-11 of ACl318), ٤/ (1 + 50*p')	8): =	2.00
Tiι ξ= Μι λ _Δ Cr	uration of Sus me-Depender = ultiplier Factor _A =	nt Factor for Sustained Lo TAB(" r for Long-Term Deflectio	pads (According to Cl. 9.5.2.5 of ACl31 ACl/Sustained";x;Dur=Dur;) n (According to Eq. 9-11 of ACl318), ٤/ (1 + 50*p')	8): = =	2.00 1.77
Tir ξ= Μι λ _Δ Cr Δ _{to}	uration of Sus me-Depender = ultiplier Factor _= reep and Shrir	nt Factor for Sustained Lo TAB(" r for Long-Term Deflectio	bads (According to Cl. 9.5.2.5 of ACI31 ACI/Sustained";x;Dur=Dur;) n (According to Eq. 9-11 of ACI318), $\xi/(1 + 50^*\rho')$ = $\lambda_{\Delta} * \Delta_{i_Sus}$	8): = = =	2.00 1.77 0.36 in

Ultima	te Uniform Load, w _u		
			4
	Beam Span (L)		d l
$ \begin{array}{c} $	^{/c} ∳Vc/2 Shear Force Diagram C.L	b	<u> </u>
/stem			
Width of Concrete Section	on, b=		13.0 in
Depth of Concrete Section	on, h=		22.5 in
Concrete Cover, co=			2.5 in
Effective Depth of Concr	ete Section, d= h-co = 22.5-2.5	=	20.0 in
Beam Span, L=			30.0 ft
ad			
Ultimate Uniform Load, v	v _u =		4.5 kip/ft
Ultimate Shear Force at	Support, V _{ui} = w _u *L/2	=	67.5 kips
Ultimate Shear Force at	Distance [d] from Support, $V_u = V_{ui} - w_u^*(d/12)$	=	60.0 kips
iterial Properties			
Concrete Strength, f' _c =			3000 psi
Yield Strength of Reinfor	cement, f _v =		40000 psi
	on Factor (According to Cl.9.3.2 of ACI318), Φ =		0.75
Modification Factor for L			1.00
Concrete Density, w _c =			150 psi
etermine Concrete Shear Stro	angth		
	provided by Concrete (According to Eq. 11-3 of AC	(318)	
Homma onear otrongin		,	
V _c =	$2 \lambda^* \sqrt{f_c} \frac{b^* d}{1000}$	=	28.5 kips
Shear Reinforcement is	: IF($V_{\mu} > \Phi * V_{c}$;"Required";"Not Required")		Required

ACI 318 Page: 85

Determine Area of Shear Reinforcement					
Nominal Shear Strength provided by	Reinforcement (According to Eq. 11-2 of	ACI31	8),		
V _s =	$\frac{V_{u} \cdot \Phi^* V_{c}}{\Phi}$	=	51.5 kips		
v _s -	Φ	-	51.5 Kips		
Maximum Allowable Shear Strength	provided by Reinforcement (According to	Cl.11.	4.7.9 of ACI318),		
V _{s_max} =	$8*\sqrt{f_c}*\frac{b*d}{1000}$	=	113.9 kips		
IF(V _s >V _{s_max} ; "Increase Beam Dime	ension"; "OK")	=	ОК		
Spacing of Provided Stirrups, s=			6.0 in		
Required Area of Reinforcement, A _v	$= \frac{V_{s} * s * 1000}{f_{y} * d}$	=	0.39 in ²		
Minimum Area of Reinforcement (Ac	cording to CI.11.4.6.3 of ACI318),				
A _{v_min1} =	$\frac{0.75^*\sqrt{f_c}*b*s}{f_y}$	=	0.08 in ²		
A _{v_min2} =	$\frac{50*b*s}{f_y}$	=	0.10 in ²		
A _{v_min} =	MAX(A _{v_min1} ; A _{v_min2})	=	0.10 in ²		
Required Area of Reinforcement, Av	_{c_Req} =MAX(A _v ; A _{v_min})	=	0.39 in ²		
Provided Reinforcement, Bar=	SEL("ACI/Bar"; Bar;)	=	No.4		
Provided Reinforcement, A _{sb} =	TAB("ACI/Bar"; Asb; Bar=Bar)	=	0.20 in ²		
Number of Stirrups, n=			1		
Provided Area of Reinforcement, $A_{\!v}$	_{c_Prov} = A _{sb} * n * 2	=	0.40 in ²		
Check Validity=	IF(A _{vc_Prov} ≥A _{vc_Req} ; "Valid"; "Invalid")	=	Valid		
Determine Maximum Permissible Spacing	of Stirrups				
Allowable Shear Strength provided b	y Reinforcement for Spacing Limit (Accord	ding to	CI.11.4.5.3 of ACI318),		
V _{s_limit} =	$4 \star \lambda^* \sqrt{f_c} \star \frac{b \star d}{1000}$	=	57.0 kips		
Factor for Maximum Spacing of Stirr	ups, Fac=IF(V _s ≤V _{s_limit} ;1;0.5)	=	1.0		
Maximum Spacing of Stirrups (Acco	rding to Cl.11.4.5.1 of ACI318),				
s _{max} =	MIN(d/2;24) * Fac	=	10.00 in		
Check Validity=	IF(s≤s _{max} ;"Valid"; "Invalid")	=	Valid		

Chapter 1: Concrete Design

Shear Reinforcement for Section Subject to Q & M

Determine Distribution Distance of Shear Reinforcement

Distance from Support beyond which Minimum Shear Reinforcement is Required,

$$\frac{V_{ui} - \Phi^* Vc}{w_u} = 10.3 \text{ ft}$$

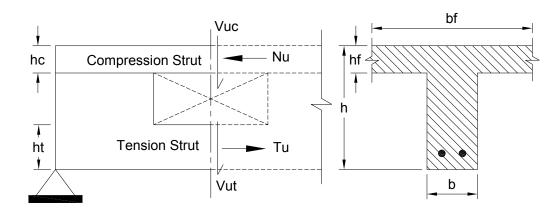
Distance from Support beyond which Concrete can carry Shear Force,

$$\frac{V_{ui} - \Phi^* Vc/2}{w_u} = 12.6 \text{ ft}$$

Design Summary

x_m=

x_c=


Provided Area of Shear Reinforcement, A _{vc_Prov} = A _{vc_Prov}	=	0.40 in ²
Distance from Support beyond which Minimum Shear Reinforcement, $x_{c}\text{=}\ x_{c}$	=	10.3 ft
Distance from Support beyond which Concrete can carry Shear Force, $x_{\rm m}^{}\text{=}x_{\rm m}^{}$	=	12.6 ft

Shear Reinforcement at Opening

ACI 318 Page: 87

Check Shear Reinforcement at Opening as per ACI 318-11 Chapter 11

System

Width of Beam, b=	4.3 in
Width of Top Flange, b _f =	48.0 in
Height of Beam, h=	26.0 in
Height of Compression Strut, h _c =	4.0 in
Height of Tension Strut, h _t =	12.0 in

Load

Ultimate Shear Force at Center of Opening, V _u =	7.2 kips
Ultimate Axial Tension Force in Tension Strut, T _u =	-10.8 kips
Ultimate Axial Compression Force in Compression Strut, N_u =	60.0 kips
Ultimate Shear Force in Tension Strut, V _{ut} =	6.0 kips
Ultimate Shear Force in Compression Strut, V _{uc} =	5.4 kips

Material Properties

Concrete Strength for Beam, f' _{c1} =	6000 psi
Concrete Strength for Topping, f' _{c2} =	3000 psi
Yield Strength of Reinforcement, f _y =	60000 psi
Shear Strength Reduction Factor (According to CI.9.3.2 of ACI318), Φ =	0.75
Modification Factor for Lightweight Concrete, $\lambda =$	1.00

Chapter 1: Concrete Design

Shear Reinforcement at Opening

ACI 318 Page: 88

Required Shear RFT, A_{v_Req} =	$\frac{V_u}{\Phi^* f y / 1000}$	=	0.16 in ²
Identification of, Bar=	Φ"τy/1000 SEL("ACI/Bar" ;Bar;)	=	No.3
Provided Reinforcement, A _{sb} =	TAB("ACI/Bar"; Asb; Bar=Bar)	=	0.11 in ²
Number of Bars, $n=$		-	2
Provided Shear Reinforcement, A_v	=n*A.t	=	- 0.22 in ²
Check Validity=	_Prov to the sp IF(A _{v_Prov} ≥A _{v_Req} ; "Valid"; "Invalid")	=	Valid
lation of Shear Reinforcement of T			
	8 * h _t	=	9.6 in
Concrete Shear Strength for Tensil	e Strut (According to Eq.11-8 of ACI318),		
V _{ct} = 2 [*]	$\left(1 + \frac{T_u * 1000}{500 * b * h_t}\right) * \lambda * \frac{\sqrt{f_{c1}}}{1000} * b * d_t$	=	3.72 kips
Shear Reinforcement for Ten. Stru	t=IF(V _{ut} ≤Φ*V _{ct} ;"Not Required";"Required")	=	Required
Spacing between Stirrups (Accordi	ng to Cl.11.4.5.1 of ACI318),		
s=	0.75 * h _t	=	9.00 in
Required RFT Area, A _{vt_Req} =	$\frac{(V_{ut} - \Phi^* V_{ct})^* s}{\Phi^* f_v^* d_t^{\prime} 1000}$	=	0.07 in ²
Identification of, Bar=	SEL("ACI/Bar" ;Bar;)	=	No.3
Provided Reinforcement, A _{sb} =	TAB("ACI/Bar"; Asb; Bar=Bar)	=	0.11 in ²
Number of Bars, n=			1
Provided Shear Reinforcement, Av	_{t_Prov} =n * A _{sb}	=	0.11 in ²
Check Validity= IF	(A _{vt_Prov} ≥A _{vt_Req} ; "Valid"; "Invalid")	=	Valid
lation of Shear Reinforcement of C	compression Strut		
Strut Depth, d _c = 0.3	8 * h _c	=	3.2 in
Concrete Shear Strength for Tensil	e Strut (According to Eq.11-8 of ACI318),		
V _{cc} = 2,	$ \left(1 + \frac{N_{u} * 1000}{2000 * b_{f} * h_{c}}\right) * \lambda * \frac{\sqrt{f_{c2}}}{1000} * b_{f} * d_{c} $	=	19.46 kips
Shear Reinforcement for Comp. St	rut=IF(V _{uc} ≤Φ*V _{cc} ;"Not Required";"Required	1") =	Not Require

Chapter 1: Concrete Design

Shear Reinforcement at Opening

ACI 318 Page: 89

Zero

	Spacing between Stirrups (According to Cl.11.4.5.1 of ACI318),					
	s=	0.75 *	h _c	=	3.00 in	
	Required RFT Area, A _{vc_Req} =		·Φ*V _{cc})*s *d _c /1000	=	-0.19 in ²	
	Identification of, Bar=	SEL("	ACI/Bar" ;Bar;)	=	No.3	
	Provided Reinforcement, A _{sb} =	TAB("	ACI/Bar"; Asb; Bar=Bar)	=	0.11 in ²	
	Number of Bars, n=				1	
	Provided Shear Reinforcement, $A_{vc_Prov} = n * A_{sb}$			=	0.11 in ²	
	Check Validity= IF(A	A _{vc_Prov} ≥A _{vc}	_ _{Req} ; "Valid"; "Invalid")	=	Valid	
Design Summary						
	Shear Reinforcement for Beam, ${\rm A_{v_F}}$	Prov=	A _{v_Prov}	=	0.22 in	
	Shear Reinforcement for Ten. Strut,	A _{vt_Prov} =	$IF(V_{ut}\!\!\leq\!\!\Phi^*V_{ct}\!;\!"Zero"\;;A_{vt_Prov})$	=	0.11 in ²	

Shear Reinforcement for Com. Strut, A_{vc_Prov} = IF($V_{uc} \le \Phi^* V_{cc}$;"Zero"; A_{vc_Prov}) =

Horizontal Shear for Composite Slab and Precast Beam

Design of Horizontal Shear for Composite Slab and Precast Beam as per ACI 318-11 Chapters 11 & 17 Cast-in-place Slab h Precast Beam со b System 10.0 in Width of Beam, b= 20.5 in Height of Beam, h= Concrete Cover, co= 1.5 in h-co Depth of Beam, d= 19.0 in = Span of Simple Beam, L= 30.0 ft Identification of, Bar= SEL("ACI/Bar" ;Bar;) No.5 = TAB("ACI/Bar" ;Dia ;Bar=Bar) Diameter of Bars, d_b= 0.63 in = Number of Bars, n= 2 Load Service Dead Load, W_D= 315 lb/ft Service Live Load, W_I = 3370 lb/ft 1.2*W_D+1.6*W_I Ultimate Load, W₁₁= 5770 lb/ft **Material Properties** Concrete Strength, f'c= 3000 psi 60000 psi Yield Strength of Reinforcement, fv= Shear Strength Reduction Factor (According to CI.9.3.2 of ACI318), Φ = 0.75 Modification Factor for Lightweight Concrete, $\lambda =$ 1.00 Friction Factor (According to Cl.11.6.4.3 of ACI318), μ = 1.0* λ 1.00 = Interactive Design Aids for Structural Engineers

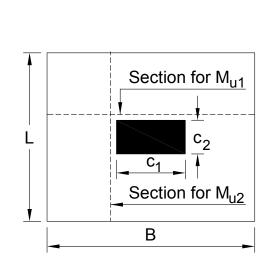
Chapter 1: Concrete Design

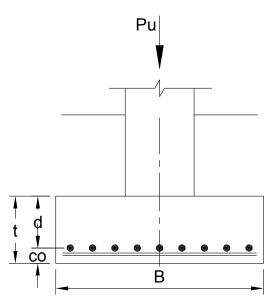
Horizontal Shear for Composite Slab and Precast Beam

ACI 318 Page: 91

Calcul	ation of Horizontal Shear Reinforcement			
	Ultimate Shear Force at Distance (d) from S	Support		
	$V_{u} = \frac{\left(W_{u} * \frac{L}{2}\right) - \left(W_{u} * \frac{d}{12}\right)}{1000}$	$\frac{1}{2}$	=	77.4 kips
	Horizontal Shear Strength (According to Cl.	17.5.3 of ACI318),		
	$\Phi V_{nh} = \frac{\Phi * 500 * b * d}{1000}$		=	71.3 kips
	Horizontal Shear Reinforcement= IF(V _u :	≤ ΦV _{nh} ; "Not Required"; "Required") =	Required
	Horizontal Shear Force Pre one foot, v _{uh} =	$\frac{V_u}{d * b}$	=	0.407 ksi
	Required RFT Area for Shear Friction, A_{vf} =	$\frac{v_{uh} * b * 12}{\Phi * fy * \mu / 1000}$	=	1.09 in ² /ft
	Spacing Between Links, s=	$\frac{\pi^* n^* 12^* d_b^2}{A_{vf}^* 4}$	=	6.9 in
Desigr	a Summary			
	Spacing Between Links, s=	S	=	6.9 in

Reinforcement of Shallow Foundation


ACI 318 Page: 92


5.09 ksf

=

Chapter 2: Foundation Design

Design of Reinforcement for Shallow Foundation as per ACI 318-11 Chapter 15

System

	Width of Column, c ₁ =			30.0 in
	Length of Column, c ₂ =			12.0 in
	Width of Footing, B=			13 ft
	Length of Footing, L=			13 ft
	Area of Footing, A _f =	B * L	=	169 ft ²
	Depth of Footing, t=			30.5 in
	Concrete Cover, co=			2.5 in
	Effective Depth of Footing, d=	t-co	=	28.0 in
Load				
	Service Dead Load, P _D =			350 kips
	Service Live Load, P _L =			275 kips
	Ultimate Load, P _u =	1.2*P _D +1.6*P _L	=	860 kips

Ultimate Pressure, $q_s = P_u / A_f$

Chapter 2: Foundation Design Reinforcement of Shallow Foundation

ACI 318 Page: 93

Material Properties					
Concrete Strength, f' _c =	Concrete Strength, f' _c =				
Yield Strength of Reinf	orcement, f _y =			60000 psi	
Tension Strength Red	uction Factor	(According to Cl.9.3.2 of ACI318), Φ =		0.90	
Determine Area of Reinforce	ment Distrib	uted in Footing Width (B)			
M _{u1} =	q _s *B *(0.5	$5^{*}\left(L-\frac{c_{2}}{12}\right)\right)^{2}/2$	=	1191 kip*ft	
R _{n1} =	$M_{u1} * 1200$ $\Phi * B * 12*0$	$\frac{100}{1^2}$	=	130 psi	
ρ ₁ =	$\frac{0.85 f_{c}}{f_{y}}$	$\left(1 - \sqrt{1 - \frac{2 R_{n1}}{0.85 r_{c}}}\right)$	=	0.0022	
Minimum Reinforceme	ent Ratio (Acc	ording to CI.7.12.2 of ACI318),			
ρ _{min} =	IF(f _y ≤50000);0.002;IF(f _y ≥77143;0.0014;0.0018))	=	0.0018	
Required Area of Rein	forcement, A _s	, _{1_Req} = MAX(ρ _{min} ; ρ ₁) * B * d * 12	=	9.61 in ²	
Provided Reinforceme	nt, Bar=	SEL("ACI/Bar"; Bar;)	=	No.8	
Provided Reinforceme	nt, A _{sb1} =	TAB("ACI/Bar"; Asb; Bar=Bar)	=	0.79 in ²	
Number of Bars, n ₁ =				13	
Provided Area of Reint	forcement, A _s	$_{1}Prov = n_1 * A_{sb1}$	=	10.27 in ²	
Check Validity=	IF(A _{s1_Prov}	≥A _{s1_Req} ; "Valid"; "Invalid")	=	Valid	

Chapter 2: Foundation Design Reinforcement of Shallow Foundation

ACI 318 Page: 94

Deterr	nine Area of Reinforce	ment Distribut	ed in Footing Lengt	h (L)		
	M _{u2} =	q _s *L*(0.5*)	$\left(B-\frac{c_1}{12}\right)^2/2$		=	912 kip*ft
	R _{n2} =	$\frac{M_{u2} * 12000}{\Phi * L * 12 * d^2}$			=	99 psi
	ρ ₂ =	$\frac{0.85 \text{ *} \text{f}_{c}}{\text{f}_{y}} \text{*} \left(\frac{1}{2}\right)$	$1 - \sqrt{1 - \frac{2 R_{n2}}{0.85 f_c}}$		=	0.0017
	Minimum Reinforceme	ent Ratio (Accore	ding to CI.7.12.2 of A	CI318),		
	ρ _{min} =	IF(f _y ≤50000;0	0.002;IF(f _y ≥77143;0.0	014;0.0018))	=	0.0018
	Required Area of Rein	forcement, A _{s2_}	_ _{Req} = MAX(ρ _{min} ; ρ ₂) *	L * d * 12	=	7.86 in ²
	Provided Reinforceme	nt, Bar=	SEL("ACI/Bar";	Bar;)	=	No.8
	Provided Reinforceme	nt, A _{sb2} =	TAB("ACI/Bar";	Asb; Bar=Bar)	=	0.79 in ²
	Number of Bars, n ₂ =					11
	Provided Area of Reint	forcement, A _{s2_}	Prov=n ₂ * A _{sb2}		=	8.69 in ²
	Check Validity=	IF(A _{s2_Prov} ≥A	s _{2_Req} ; "Valid"; "Inval	id")	=	Valid
Desig	n Summary					
	Area of Reinforcement	t Distributed in F	Footing Width, A _{s1} =	A _{s1_Prov}	=	10.27 in ²
	Area of Reinforcement	t Distributed in F	Footing Length, A _{s2} =	A _{s2_Prov}	=	8.69 in ²

Depth of Shallow Foundation

ACI 318 Page: 95

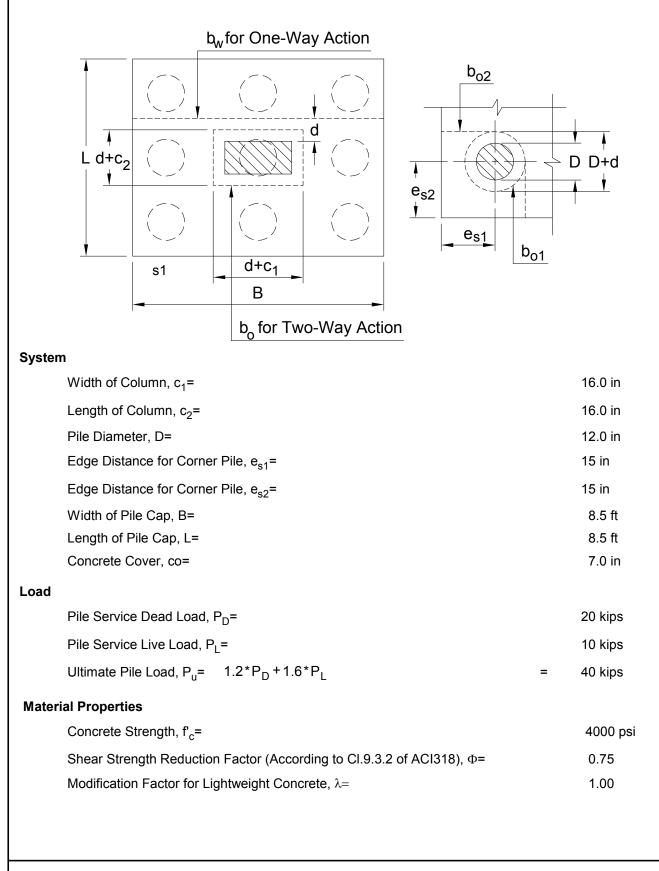
Design for Depth of Shallow Foundation as per ACI 318-11 Chapters 11 & 15

b _w for One-Way Action h_w for One-Way Action h_c $d + c_2$ $d + c_1$ b_o for Two-Way Action b_o for Two-Way Action h_s $d + c_1$ b_o for Two-Way Action h_s		
System		
Width of Column, c ₁ =		30.0 in
Length of Column, c ₂ =		12.0 in
Concrete Cover, co=		5.0 in
Height of Soil above Footing, h _s =		5 ft
Load		
Service Dead Load, P _D =		350 kips
Service Live Load, P _L =		275 kips
Ultimate Load, P_u = 1.2* P_D + 1.6* P_L	=	860 kips
Service Surcharge, q=		0.1 ksf
Allowable Soil Pressure at Bottom of Footing, P _a =		4.5 ksf
Average Weight of Soil and Concrete above Footing Base, w=		130.0 pcf
Material Properties		
Concrete Strength, f' _c =		3000 psi
Shear Strength Reduction Factor (According to Cl.9.3.2 of ACI318), Φ =		0.75
Modification Factor for Lightweight Concrete, $\lambda =$		1.00

Depth of Shallow Foundation

ACI 318 Page: 96

Calculation of Base Area	*h	
Net Allowable Soil Pressure, $P_{na} = P_a - q - \frac{w^3}{10}$	=	3.75 ksf
P _D +P _L		
Required Area of Footing, $A_f = \frac{P_D P_L}{P_{na}}$	=	166.7 ft ²
Assume Width of Footing, B=		13 ft
Assume Length of Footing, L=		13 ft
Check Validity= IF(A _f > L*	B; "Invalid"; "Valid") =	Valid
Ultimate Pressure, $q_s = P_u / (B * L)$	_) =	5.09 ksf
Calculation of Required Thickness for One-Way Action	I	
Assume that Thickness of Footing, t=		33 in
Depth of Footing, d= t - co	=	28 in
Critical Area of One-Way Shear, $A_{1B} = B * \left(\frac{L - c_2}{2}\right)$	$= \frac{1}{12} \left(\frac{d}{12} \right) = \frac{1}{12}$	47.67 ft ²
Critical Area of One-Way Shear, $A_{1L} = L^* \left(\frac{B-c_1}{2}\right)$	$\frac{\frac{12}{12}}{-\frac{d}{12}} =$	37.92 ft ²
Critical Area of One-Way Shear, A ₁ = MAX(A _{1B} ; A	A _{1L}) =	47.67 ft ²
Width of Critical Section for One-Way Shear, b _w =	IF(A _{1B} >A _{1L} ; B ; L) =	13 ft
Ultimate Shear force at Critical Area Section, V_{u1} =	q _s * A ₁ =	243 kips
Nominal Concrete Shear Strength, $\Phi V_c = \Phi^* 2^* \lambda^* d$	$\sqrt{f_c} * \frac{b_w * 12 * d}{1000} =$	359 kips
Check Validation = $IF(\Phi V_c > V_{u1}; "O.$.K."; "Increase Depth") =	O.K.
Calculation of Required Thickness for Two-Way Action	1	
Critical Area of Two-Way Shear, $A_2 = B*L - \left(\frac{c}{c}\right)$	$\frac{(a_1 + d)^*(c_2 + d)}{144} =$	152.89 ft ²
Ultimate Shear force at Critical Area Section, V_{u2} =	q _s * A ₂ =	778.2 kips
Perimeter of Critical Section for Two-Way Shear, b	$p_0 = 2^*(c_1 + d) + 2^*(c_2 + d) =$	196.0 in
Column Type= SEL("ACI/Alfa S";Type;)	=	Interior
Alfa Constant, $\alpha_{ m s}$ = TAB("ACI/AlfaS"; Alfa; Tyr	pe=Type) =	40.00
Ratio of Long to Short Column Dimensions, β = MA	$X(c_1;c_2)/MIN(c_1;c_2) =$	2.50


Depth of Shallow Foundation

Concrete Shear Strength (According to Eq. 11-31 of ACI318),		
$V_{c1} = \left(2 + \frac{4}{\beta}\right)^* \lambda^* \sqrt{f_c}^* \frac{b_0^{-\alpha}}{1000}$	=	1082 kips
Concrete Shear Strength (According to Eq. 11-32 of ACI318),		
$V_{c2} = \left(\alpha_s * \frac{d}{b_0} + 2 \right) * \lambda * \sqrt{fc} * \frac{b_0 * d}{1000}$	=	2319 kips
Concrete Shear Strength (According to Eq. 11-33 of ACI318),		
$V_{c3} = 4 * \lambda * \sqrt{f_c} * \frac{b_0 * d}{1000}$	=	1202 kips
Nominal Concrete Shear Strength, $\Phi V_c = \Phi * MIN(V_{c1}; V_{c2}; V_{c3})$	=	812 kips
Check Validation = $IF(\Phi V_c > V_{u2}; "O.K."; "Increase Depth")$	=	0.K.
Calculation Summary		
Width of Footing, B= B	=	13 ft
Length of Footing, L= L	=	13 ft
Thickness of Footing, t= t	=	33 in

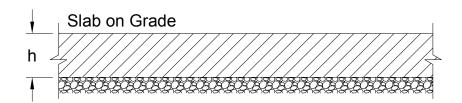
Depth for Pile Cap

Design Depth for Pile Cap as per ACI 318-11 Chapter 11

Depth for Pile Cap

Calculation of Required Thi	ckness due to One-Way Shear		
Assume that Thickne	ss of Pile Cap, t=		22 in
Depth of Pile Cap, d=	t - co	=	15 in
Width of Critical Sect	ion for One-Way Shear, b _w = MIN(B ; L)	=	8.5 ft
Number of Piles fall v	vithin Critical Section for One-Way Action, n _{r1} =		3
Ultimate Shear force	at Critical Area Section, $V_{u1} = P_u * n_{r1}$	=	120 kips
Nominal Concrete Sh	hear Strength, $\Phi V_c = \Phi^* 2^* \lambda^* \sqrt{f_c}^* \frac{b_w^* 12^* d}{1000}$	=	145 kips
Check Validation =	IF($\Phi V_c > V_{u1}$; "O.K."; "Increase Depth")	=	O.K.
Calculation of Required Thi	ckness due to Two-Way Shear for Group Piles		
Perimeter of Critical S	Section for Two-Way Shear, $b_0 = 2^*(c_1+d) + 2^*(c_2+d)$	=	124.0 in
Number of Piles fall v	vithin Critical Section for Two-Way Action, n _{r2} =		8
Ultimate Shear force	at Critical Area Section, V_{u2} = $P_u * n_{r2}$	=	320 kips
Column Type=	SEL("ACI/Alfa S";Type;)	=	Interior
Alfa Constant, α_s =	TAB("ACI/AlfaS"; Alfa; Type=Type)	=	40.00
Ratio of Long to Shor	t Column Dimensions, β = MAX(c ₁ ;c ₂)/MIN(c ₁ ;c ₂)	=	1.00
Concrete Shear Strer	ngth (According to Eq. 11-31 of ACI318),		
V _{c1} =	$\left(2+\frac{4}{\beta}\right)*\lambda^*\sqrt{f_c}*\frac{b_0*d}{1000}$	=	706 kips
Concrete Shear Strer	ngth (According to Eq. 11-32 of ACI318),		
V _{c2} =	$\left(\alpha_{s} * \frac{d}{b_{0}} + 2\right) * \lambda * \sqrt{fc} * \frac{b_{0} * d}{1000}$	=	804 kips
Concrete Shear Strer	ngth (According to Eq. 11-33 of ACI318),		
V _{c3} =	$4 * \lambda * \sqrt{f_c} * \frac{b_0 * d}{1000}$	=	471 kips
Nominal Concrete Sh	ear Strength, $\Phi V_c = \Phi * MIN(V_{c1}; V_{c2}; V_{c3})$	=	353 kips
Check Validation =	IF($\Phi V_c > V_{\mu 2}$; "O.K."; "Increase Depth")	=	0.K.

Depth for Pile Cap


Calculation of Required Thickness due to Two-Way Shear for Single Corner Pile		
Perimeter of Critical Section for Two-Way Shear, $b_{01} = \pi^* (D + d)$	=	84.8 in
Perimeter of Critical Section for Two-Way Shear, b_{02} = $\pi * (D+d)/4 + e_{s1} + e_{s2}$	=	51.2 in
Perimeter of Critical Section for Two-Way Shear, $b_0 = MIN(b_{01}; b_{02})$	=	51.2 in
Perimeter Ultimate Shear force at Critical Section, V_{u3} = P_u * 1.0	=	40 kips
Column Type= SEL("ACI/Alfa S";Type;)	=	Corner
Alfa Constant, α_s = TAB("ACI/AlfaS"; Alfa; Type=Type)	=	20.00
Ratio of Long to Short Column Dimensions, β = MAX(c ₁ ;c ₂)/MIN(c ₁ ;c ₂)	=	1.00
Concrete Shear Strength (According to Eq. 11-31 of ACI318), $V_{c1} = \left(2 + \frac{4}{\alpha}\right)^* \lambda^* \sqrt{f_c}^* \frac{b_0^* d}{1000}$	=	291 kips
Concrete Shear Strength (According to Eq. 11-32 of ACI318), $V_{c2} = \left(\alpha_{s} * \frac{d}{b_{0}} + 2\right) * \lambda * \sqrt{fc} * \frac{b_{0} * d}{1000}$ Concrete Shear Strength (According to Eq. 11-33 of ACI318),	=	382 kips
$V_{c3} = 4 * \lambda * \sqrt{f_c} * \frac{b_0 * d}{1000}$	=	194 kips
Nominal Concrete Shear Strength, $\Phi V_c = \Phi * MIN(V_{c1}; V_{c2}; V_{c3})$	=	146 kips
Check Validation = IF($\Phi V_c > V_{u3}$; "O.K."; "Increase Depth")	=	0.K.
Calculation Summary		
Thickness of Pile Cap, t= t	=	22 in

Slab on Grade

ACI 318 Page: 101

Design of Slab on Grade Due to Wheel Load as per ACI 360-10 Appendix 1

System

	Thickness of Slab on Grade, h=			10.0 in	
	Spacing between Wheels, s=			40.0 in	
	Contact Area per Wheel, A _c =			50.0 in ²	
	Effective Contact Area per Wheel (Ac	ccording to CI.A1.2 of ACI360), $A_{c_{eff}}$ =		61.5 in ²	
Load					
	Wheel Axle Load, P=			30 kips	
Materi	ial Properties				
	Concrete Strength, f' _c =			4000 psi	
	Subgrade Modulus, K=			100 lb/in ³	
	Safety Factor, FS=			2.00	
Checking Slab Thickness					
	Modulus of Rupture of Concrete, f _r =	$9*\sqrt{f_c}$	=	569.2 psi	
	Concrete Working Stress, $f_{t_{all}}$ =	f _r / FS	=	284.6 psi	
	Slab Stress per 1000 lb Axle Load, $f_t^{}$	= f _{t_all} / (P/1.0)	=	9.5 psi	
	Required Slab Thickness (According	to Fig.A1.1 of ACI360),			
	h _{min} =			9.92 in	
	Check Validation=	IF(h≥h _{min} ; "Valid"; "Invalid")	=	Valid	
Desig	n Summary				
	Thickness of Slab on Grade, h=	h	=	10.0 in	

Chapter 3: Steel Design

Design of W-Shapes Subjected to Bending Moment about Strong Axis and Braced at Some Points

Be	am braced at s	some points	M _x		
	X	X	(
Materials					
Grade:	SEL("N	/laterial/ASTM"; NAME;)		=	A992
Fy=	TAB("N	//aterial/ASTM";F _v ;NAME=Grad	de)	=	50 ksi
E=				2	9000 ksi
Beam Length and Cb					
Total length, L=					35.00 ft
Unsupported lengt	h, L _b =				17.50 ft
From Table 3-1 (A)	ISC), C _b =				1.50
Design Moments and Uni	form Live Load	1			
Ultimate moment, I					200.00 kip*ft
Ultimate moment d	Ultimate moment due to live load case, M _I =				140.00 kip*ft
Ultimate shear, Q _u		-			30.00 kips
Section Details					
Section Details	SEL ("A	AISC/W";NAME;)		=	W21X48
depth, d=		AISC/W";d;NAME=sec.)		=	20.60 in
Web th., t _w =		AISC/W";t _w ;NAME=sec.)		=	0.35 in
Flange width, b _f =	TAB("A	AISC/W";b _{f;} NAME=sec.)		=	8.14 in
Flange th., t _f =	TAB("A	AISC/W";t _f ;NAME=sec.)		=	0.43 in
Plastic sec. modul	us, Z _x = TAB("A	AISC/W";Z _x ;NAME=sec.)		=	107.00 in ³
Elastic sec. moduli	us, S _x = TAB("A	AISC/W";S _x ;NAME=sec.)		=	93.00 in ³
Inertia about x-axis	s, I _x = TAB("A	AISC/W";I _x ;NAME=sec.)		=	959.00 in ⁴
r _y =	TAB("A	AISC/W";r _y ;NAME=sec.)		=	1.66 in
r _{ts} =	TAB("A	AISC/W";r _{ts} ;NAME=sec.)		=	2.05 in

(r_v is radius of gyration about y-axis and r_{ts} : is effective radius of gyration for the L.T.B.)

Chapter 3: Steel Design W-Shapes in Strong Axis Bending, Braced at Some Points

AISC Page: 103

Torsional constant, J= TAB("AISC/W";J;NAME=sec.) = 0.80 in ⁴ h ₀ = TAB("AISC/W";h ₀ ;NAME=sec.) = 20.20 in (h ₀ : is the distance between C.L. of flanges) AISC Specification Eqn. (F2-1): Yielding Moment, Mp= $Z_x^{+}\Gamma_y^{+}1/12$ = 446 kip*ft ment Classification (1) Web: ht _w , $\lambda_w^{=}$ TAB("AISC/W";ht _w ;NAME=sec.) = 53.60 According to AISC Specification Table B4.1 Case 9, the limiting width-to-thickness ratio for the web Web_Class= IF($\lambda_w^{<3}.76^{+}$ \(E/Fy),"Compact"; "Non-Compact") = Compact (2) Comp. flange: by/2t ₁ , $\lambda_r^{=}$ TAB("AISC/W";bf/2tf;NAME=sec.) = 9.47 According to AISC Specification Table B4.1 Case 1, the limiting width-to-thickness ratios for the compression flange are: $\lambda_p f^{=}$ 0.38*\(E/Fy) = 9 $\lambda_r f^{=}$ 1.00*\(E/Fy) = 24 F_Class= IF($\lambda_r S_x p_r^{+}$ Compact";IF($\lambda_r > \lambda_r p_r^{+}$ Slender";"Non-Compact")) = Non-Compact The available strength provided by AISC Specification Sections F3.1 and F3.2, the nominal flexural μ is calculated as follows, satisfying the condition of compression Flange Local Buckling: $M_{r1}a^{=}$ $M_p 0.7 \cdot F_y \cdot S_x^{-1}/12$ = 175 kip*ft $M_{r1}a^{=}$ IF(FL_Class="Compact"; M _p ; (M _p -M _{r1} a_r^{($\lambda_r - \lambda_{pf}$)})) = 441 kip*ft stal Torsional Buckling (LTB) The limiting lengths Lp and Lr are determined according to the AISC Spec. Eqns. F2-5 and F2-6, as $L_p^{=}$ $1.76^{+} r_y^{+} (E/F_y)^{1/2}$ = 5.86 ft $L_{r1}^{=}$ $\sqrt{\frac{1+\sqrt{6.76^{+}(\frac{0.7^{+}F_y \cdot S_x + h_0}{E^{-}y^{-1}(D)}}^{2}}$ = 2.89 $L_p^{=}$ $1.95/12^{+} r_b^{-} \frac{E}{0.7^{+} F_y}^{+} L_{r1}^{+} L_{r2}$ = 15.95 ft				
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Torsional constant. J=	TAB("AISC/W":J:NAME=sec.)	=	0.80 in ⁴
$ (h_{o}: ls the distance between C.L. of flanges) $ AISC Specification Eqn. (F2-1): Yielding Moment, Mp= $Z_x r_y^* 1/12$ = 446 kip'ft ener Classification (1) Web: $ ht_{w}, \lambda_w = TAB("AISC/W":ht_w:NAME=sec.) = 53.60$ According to AISC Specification Table B4.1 Case 9, the limiting width-to-thickness ratio for the web I Web_Class= IF($\lambda_w \leq 3.76 * \sqrt{(E/F_y)}$."Compact": "Non-Compact") = Compact (2) Comp. flange: $ b_y/2t_p, \lambda_r = TAB("AISC/W":bf/2tf;NAME=sec.) = 9.47$ According to AISC Specification Table B4.1 Case 1, the limiting width-to-thickness ratios for the compression flange are: $ \lambda_{pl} = 0.38^* \sqrt{(E/F_y)} = 9$ $ \lambda_{rf} = 1.00^* \sqrt{(E/F_y)} = 24$ FI_Class= IF($\lambda_q \leq \lambda_{pl}$."Compact": IF($\lambda_r \geq \lambda_{rf}$."Slender": "Non-Compact")) = Non-Compact The available strength provided by AISC Specification Sections F3.1 and F3.2, the nominal flexural r is calculated as follows, satisfying the condition of compression Flange Local Buckling: $ M_{n1a} = M_p \cdot 0.7^* F_y \cdot S_x \cdot 1/12 = 175 \text{ kip"ft}$ $ M_{n1a} = IF(FI_{class}="Compact"; M_p; (M_p - M_{n1a} * \frac{\lambda_f \cdot \lambda_{pf}}{\lambda_{rf} \cdot \lambda_{pf}}))) = 441 \text{ kip"ft} Tal Torsional Buckling (LTB) The limiting lengths Lp and Lr are determined according to the AISC Spec. Eqns. F2-5 and F2-6, as L_p^{=} 1.76^* r_y^* \sqrt{(E/F_y)/12} = 5.86 \text{ ft} L_{r1}^{=} \sqrt{\frac{\int J^* \cdot 1.0}{S_x \cdot n_0}} = 0.02$			=	
AISC Specification Eqn. (F2-1): Yielding Moment, Mp= $Z_x^*F_y^*1/12$ = 446 kip*ft ent Classification (1) Web: h/t _w , $\lambda_w^{=}$ TAB("AISC/W";h/t _w :NAME=sec.) = 53.60 According to AISC Specification Table B4.1 Case 9, the limiting width-to-thickness ratio for the web i Web_Class= IF($\lambda_w \leq 3.76 * \sqrt{E/F_y}$,"Compact"; "Non-Compact") = Compact (2) Comp. flange: $b_f/2t_f, \lambda_f^{=}$ TAB("AISC/W";bf/2tf;NAME=sec.) = 9.47 According to AISC Specification Table B4.1 Case 1, the limiting width-to-thickness ratios for the compression flange are: $\lambda_p r^{=}$ 0.38* $\sqrt{E/F_y}$ = 9 $\lambda_r q^{=}$ 1.00* $\sqrt{E/F_y}$ = 24 FI_Class= IF($\lambda_r \leq \lambda_{pf}$."Compact";IF($\lambda_r > \lambda_{rf}$ "Slender";"Non-Compact")) = Non-Compact The available strength provided by AISC Specification Sections F3.1 and F3.2, the nominal flexural r is calculated as follows, satisfying the condition of compression Flange Local Buckling: M_{n1a} = Mp=0.7*Fy*Sx*1/12 = 175 kip*ft M_{n1} = IF(FI_Class="Compact"; Mp; (Mp-Mn_{11a}*(\frac{\lambda_f - \lambda_{pf}}{\lambda_{rf} - \lambda_{pf}}))) = 441 kip*ft al Torsional Buckling (LTB) The limiting lengths Lp and Lr are determined according to the AISC Spec. Eqns. F2-5 and F2-6, as $L_p^{=}$ 1.76*ry* $\sqrt{E/F_y}/12$ = 5.86 ft L_{r1} = $\sqrt{\frac{J^{\pm 1.0}}{S_x + h_0}}$ = 0.02 L_{r2} = $\sqrt{1 + \sqrt{6.76 + (\frac{0.7*F_y * S_x * h_0}{E^* J * 1.0})^2}$ = 2.89	-	,		20.20 11
Yielding Moment, Mp= $Z_x^*F_y^*1/12$ = 446 kip*ft ant Classification (1) Web: h/t _w , $\lambda_w^{=}$ TAB("AISC/W";h/t _w ;NAME=sec.) = 53.60 According to AISC Specification Table B4.1 Case 9, the limiting width-to-thickness ratio for the web Web_Class= IF($\lambda_w \leq 3.76 * \sqrt{(E/F_y)}$,"Compact"; "Non-Compact") = Compact (2) Comp. flange: $b_f/2t_f, \lambda_f^{=}$ TAB("AISC/W";bf/2tf;NAME=sec.) = 9.47 According to AISC Specification Table B4.1 Case 1, the limiting width-to-thickness ratios for the compression flange are: $\lambda_p f^{=}$ 0.38* $\sqrt{(E/F_y)}$ = 9 $\lambda_r f^{=}$ 1.00* $\sqrt{(E/F_y)}$ = 24 FI_Class= IF($\lambda_r \leq \lambda_{pf}$,"Compact";IF($\lambda_r > \lambda_{rf}$ "Slender";"Non-Compact")) = Non-Compact The available strength provided by AISC Specification Sections F3.1 and F3.2, the nominal flexural r is calculated as follows, satisfying the condition of compression Flange Local Buckling: M_{n1a} = M_p -0.7* $F_y^*S_x^*1/12$ = 175 kip*ft M_{n1} = IF(FI_Class="Compact"; $M_p; (M_p - M_{n1a}^*(\frac{\lambda_f - \lambda_{pf}}{\lambda_{rf} - \lambda_{pf}})))$ = 441 kip*ft al Torsional Buckling (LTB) The limiting lengths Lp and Lr are determined according to the AISC Spec. Eqns. F2-5 and F2-6, as $L_p^{=}$ 1.76* $r_y^* \langle (E/F_y)/12$ = 5.86 ft $L_{r1}^{=}$ $\sqrt{\frac{J^{\pm 1.0}}{S_x^* n_0}}$ = 0.02 $L_{r2}^{=}$ $\sqrt{1 + \sqrt{6.76^* (\frac{0.7*F_y^*S_x^*h_0}{E^*J^*1.0}}^2}$ = 2.89				
The available strength provided by AISC Specification of compression Flange Local Buckling: $M_{t_{t_{t_{t_{t_{t_{t_{t_{t_{t_{t_{t_{t_$			_	116 kin*ft
(1) Web: $\begin{aligned} & h/t_{w}, \lambda_{w} = & TAB("AISC/W";h/t_{w};NAME=sec.) = & 53.60 \\ & According to AISC Specification Table B4.1 Case 9, the limiting width-to-thickness ratio for the web 1) \\ & Web_Class= & IF(\lambda_{w} \leq 3.76 * \sqrt{(E/F_y)};"Compact"; "Non-Compact") = & Compact (2) Comp. flange: \\ & b/2t_{f}, \lambda_{f} = & TAB("AISC/W";bf/2tf;NAME=sec.) = & 9.47 \\ & According to AISC Specification Table B4.1 Case 1, the limiting width-to-thickness ratios for the compression flange are: \\ & \lambda_{pl} = & 0.38^{+}\sqrt{(E/F_y)} = & 9 \\ & \lambda_{rq} = & 1.00^{+}\sqrt{(E/F_y)} = & 24 \\ & Fl_Class= & IF(\lambda_{f} \leq \lambda_{pf}; "Compact"; IF(\lambda_{f} > \lambda_{rf}; "Slender"; "Non-Compact")) = & Non-Compact \\ & The available strength provided by AISC Specification Sections F3.1 and F3.2, the nominal flexural ris calculated as follows, satisfying the condition of compression Flange Local Buckling: \\ & M_{n1a} = & M_p \cdot 0.7^{+}F_y \cdot S_x \cdot 1/12 = & 175 \text{ kip"ft} \\ & M_{n1a} = & IF(FI_Class="Compact"; M_{pi}; (M_p \cdot M_{n1a} \cdot (\frac{\lambda_{f} - \lambda_{pf}}{\lambda_{ff} - \lambda_{pf}}))) = & 441 \text{ kip"ft} \\ & al Torsional Buckling (LTB) \\ & The limiting lengths Lp and Lr are determined according to the AISC Spec. Eqns. F2-5 and F2-6, as \\ & L_{p} = & 1.76^{+}r_y^{-}\sqrt{(E/F_y)/12} = & 5.86 \text{ ft} \\ & L_{r1} = & \sqrt{\frac{J^{+} \cdot 10}{S_x \cdot h_0}} = & 0.02 \\ & L_{r2} = & \sqrt{1 + \sqrt{6.76^{+} \left(\frac{0.7^{+}F_y \cdot S_x \cdot h_0}{E^{+}J^{+}1.0}\right)^2}} = & 2.89 \\ \end{array}$		$z_{\rm X}$ y $1/12$	_	
htt _w , λ_{w} = TAB("AISC/W";h/t _w ;NAME=sec.) = 53.60 According to AISC Specification Table B4.1 Case 9, the limiting width-to-thickness ratio for the web i Web_Class= IF($\lambda_{w} \leq 3.76 * \sqrt{(E/F_y)}$,"Compact"; "Non-Compact") = Compact (2) Comp. flange: $b_{f}/2t_{f}, \lambda_{f}$ = TAB("AISC/W";bf/2tf;NAME=sec.) = 9.47 According to AISC Specification Table B4.1 Case 1, the limiting width-to-thickness ratios for the compression flange are: λ_{pf} = 0.38*\(E/F_y) = 9 λ_{rf} = 1.00*\(E/F_y) = 24 FI_Class= IF($\lambda_{f} \leq \lambda_{pf}$,"Compact";IF($\lambda_{f} > \lambda_{rf}$."Slender";"Non-Compact")) = Non-Compact The available strength provided by AISC Specification Sections F3.1 and F3.2, the nominal flexural <i>n</i> is calculated as follows, satisfying the condition of compression Flange Local Buckling: M_{n1a} Mp-0.7*Fy*Sx*1/12 = 175 kip*ft M_{n1a} IF(FI_Class="Compact"; Mp; (Mp-Mn1a*($\frac{\lambda_{f} - \lambda_{pf}}{\lambda_{rf} - \lambda_{pf}}$))) = 441 kip*ft al Torsional Buckling (LTB) The limiting lengths Lp and Lr are determined according to the AISC Spec. Eqns. F2-5 and F2-6, as L_{p} = $1.76*r_{y} * \sqrt{(E/F_{y})/12}$ = 5.86 ft L_{r1} = $\sqrt{\frac{J^{+1.0}}{S_{x} * h_{0}}}$ = 0.02 L_{r2} = $\sqrt{1 + \sqrt{6.76} * \left(\frac{0.7*F_{y} * S_{x} * h_{0}}{E*J*1.0}\right)^{2}}$ = 2.89				
According to AISC Specification Table B4.1 Case 9, the limiting width-to-thickness ratio for the web 1 Web_Class= IF($\lambda_w \leq 3.76 * \sqrt{(E/F_y)}$,"Compact"; "Non-Compact") = Compact (2) Comp. flange: by/2t ₁ , λ_{r} = TAB("AISC/W";bf/2tf;NAME=sec.) = 9.47 According to AISC Specification Table B4.1 Case 1, the limiting width-to-thickness ratios for the compression flange are: λ_{pf} = 0.38* $\sqrt{(E/F_y)}$ = 9 λ_{rf} = 1.00* $\sqrt{(E/F_y)}$ = 24 FI_Class= IF($\lambda_{r} \leq \lambda_{pf}$."Compact";IF($\lambda_{t} > \lambda_{rf}$."Slender";"Non-Compact")) = Non-Compact The available strength provided by AISC Specification Sections F3.1 and F3.2, the nominal flexural r is calculated as follows, satisfying the condition of compression Flange Local Buckling: M _{n1a} = M _p -0.7*F _y *S _x *1/12 = 175 kip*ft M _{n1} = IF(FI_Class="Compact"; M _p ; (M _p - M _{n1a} * $(\frac{\lambda_f - \lambda_{pf}}{\lambda_{rf} - \lambda_{pf}}))) = 441 kip*ft$ ral Torsional Buckling (LTB) The limiting lengths Lp and Lr are determined according to the AISC Spec. Eqns. F2-5 and F2-6, as L _p = 1.76*r _y * $\sqrt{(E/F_y)}/12$ = 5.86 ft L _{r1} = $\sqrt{\frac{\sqrt{J^* 1.0}}{S_x * h_0}}$ = 0.02 L _{r2} = $\sqrt{1 + \sqrt{6.76*(\frac{0.7*F_y*S_x*h_0}{E*J*1.0})^2}} = 2.89$				
$\begin{array}{rcl} \mbox{Web}_Class= & \mbox{IF}(\lambda_w \leq 3.76* \sqrt{(E/F_y)};"Compact"; "Non-Compact") & = & Compact (2) Comp. flange: \\ \mbox{by} 2t_{f}, \lambda_{f} = & TAB("AISC/W"; bf/2tf; NAME=sec.) & = & 9.47 \\ \mbox{According to AISC Specification Table B4.1 Case 1, the limiting width-to-thickness ratios for the compression flange are: \\ \mbox{λ_{pf}^{-}$ } & 0.38* \sqrt{(E/F_y)} & = & 9 \\ \mbox{λ_{rf}^{-}$ } & 1.00* \sqrt{(E/F_y)} & = & 9 \\ \mbox{λ_{rf}^{-}$ } & 1.00* \sqrt{(E/F_y)} & = & 24 \\ \mbox{Fl}_Class= & \mbox{IF}(\lambda_{f} \leq \lambda_{rf}$, "Slender"; "Non-Compact")) & = & Non-Compact \\ \mbox{The available strength provided by AISC Specification Sections F3.1 and F3.2, the nominal flexural n is calculated as follows, satisfying the condition of compression Flange Local Buckling: \\ \mbox{M_{n1a} = } & M_p$-0.7*F_y*S_x*1/12 & = & 175 \ kip*ft \\ \mbox{M_{n1a} = } & \mbox{IF}(E/F_y)/12 & = & 175 \ kip*ft \\ \mbox{M_{n1a} = } & \mbox{IF}(E/F_y)/12 & = & 175 \ kip*ft \\ \mbox{al Torsional Buckling (LTB) \\ The limiting lengths Lp and Lr are determined according to the AISC Spec. Eqns. F2-5 and F2-6, as \\ \mbox{L_{p} = } & 1.76*r_y* \sqrt{(E/F_y)/12 & = & 5.86 \ ft \\ \mbox{L_{r1} = } & \mbox{$\sqrt{\frac{J^*1.0}{S_x*h_0}}} & = & 0.02 \\ \mbox{L_{r2} = } & \mbox{$\sqrt{\frac{J^*1.0}{S_x*h_0}}}^2 & = & 2.89 \\ \end{tabular}$				
(2) Comp. flange: $b_{f}/2t_{f}, \lambda_{r} = TAB("AISC/W"; bf/2tf; NAME=sec.) = 9.47$ According to AISC Specification Table B4.1 Case 1, the limiting width-to-thickness ratios for the compression flange are: $\lambda_{pf} = 0.38^{*}\sqrt{(E/F_{y})} = 9$ $\lambda_{rf} = 1.00^{*}\sqrt{(E/F_{y})} = 24$ FI_Class= IF($\lambda_{r} \leq \lambda_{pf}$, "Compact"; IF($\lambda_{r} > \lambda_{rf}$, "Slender"; "Non-Compact")) = Non-Compact The available strength provided by AISC Specification Sections F3.1 and F3.2, the nominal flexural ris calculated as follows, satisfying the condition of compression Flange Local Buckling: $M_{n1a} = M_{p} \cdot 0.7^{*}F_{y} \cdot S_{x} \cdot 1/12 = 175 \text{ kip}^{*} \text{ft}$ $M_{n1a} = IF(FI_{c} Class="Compact"; M_{p}; (M_{p} - M_{n1a} \cdot (\frac{\lambda_{f} - \lambda_{pf}}{\lambda_{rf} - \lambda_{pf}}))) = 441 \text{ kip}^{*} \text{ft}$ The limiting lengths Lp and Lr are determined according to the AISC Spec. Eqns. F2-5 and F2-6, as $L_{p} = 1.76^{*}r_{y}^{*} \sqrt{(E/F_{y})/12} = 5.86 \text{ ft}$ $L_{r1} = \sqrt{\sqrt{\frac{J^{*}1.0}{S_{x} \cdot h_{0}}}} = 0.02$ $L_{r2} = \sqrt{1 + \sqrt{6.76^{*} \left(\frac{0.7^{*}F_{y} \cdot S_{x} \cdot h_{0}}{E^{*} J^{*}1.0}\right)^{2}} = 2.89$		-	iness ra	atio for the web is:
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Web_Class= IF(λ_w	≤3.76∗√(E/F _y);"Compact"; "Non-Compact")	=	Compact
According to AISC Specification Table B4.1 Case 1, the limiting width-to-thickness ratios for the compression flange are: $\lambda_{pf} = 0.38^{*\sqrt{(E/F_y)}} = 9$ $\lambda_{rf} = 1.00^{*\sqrt{(E/F_y)}} = 24$ FI_Class= IF($\lambda_{r} \leq \lambda_{pf}$, "Compact"; IF($\lambda_{r} > \lambda_{rf}$, "Slender"; "Non-Compact")) = Non-Compact The available strength provided by AISC Specification Sections F3.1 and F3.2, the nominal flexural ris calculated as follows, satisfying the condition of compression Flange Local Buckling: M _{n1a} = M _p -0.7*F _y *S _x *1/12 = 175 kip*ft M _{n1} = IF(FI_Class="Compact"; M _p ; (M _p - M _{n1a} *($\frac{\lambda_{f} - \lambda_{pf}}{\lambda_{rf} - \lambda_{pf}}$))) = 441 kip*ft al Torsional Buckling (LTB) The limiting lengths Lp and Lr are determined according to the AISC Spec. Eqns. F2-5 and F2-6, as L _p = 1.76*r _y * $\sqrt{(E/F_y)}/12$ = 5.86 ft L _{r1} = $\sqrt{\frac{J^{*1.0}}{S_x * h_0}}$ = 0.02 L _{r2} = $\sqrt{1 + \sqrt{6.76*(\frac{(0.7*F_y * S_x * h_0)}{E*J^{*1.0}})^2}}$ = 2.89	(2) Comp. flange:			
compression flange are: $\begin{split} \lambda_{pf} &= 0.38^* \sqrt{(E/F_y)} &= 9 \\ \lambda_{rf} &= 1.00^* \sqrt{(E/F_y)} &= 24 \\ Fl_Class &= IF(\lambda_r \leq \lambda_{pf}, "Compact"; IF(\lambda_r > \lambda_{rf}, "Slender"; "Non-Compact")) &= Non-Compact \\ The available strength provided by AISC Specification Sections F3.1 and F3.2, the nominal flexural r is calculated as follows, satisfying the condition of compression Flange Local Buckling: M_{n1a} &= M_p - 0.7^* F_y^* S_x^* 1/12 &= 175 \text{ kip}^* ft \\ M_{n1} &= IF(Fl_Class = "Compact"; M_p; (M_p - M_{n1a}^*(\frac{\lambda_f - \lambda_{pf}}{\lambda_{rf} - \lambda_{pf}}))) &= 441 \text{ kip}^* ft \\ \text{ral Torsional Buckling (LTB)} \\ \text{The limiting lengths Lp and Lr are determined according to the AISC Spec. Eqns. F2-5 and F2-6, as \\ L_p &= 1.76^* r_y^* \sqrt{(E/F_y)/12} &= 5.86 \text{ ft} \\ L_{r1} &= \sqrt{\frac{\sqrt{J^* 1.0}}{S_x * h_0}} &= 0.02 \\ L_{r2} &= \sqrt{\frac{1 + \sqrt{6.76} * \left(\frac{0.7^* F_y * S_x * h_0}{E^* J^* 1.0}\right)^2}} &= 2.89 \\ \end{split}$	$b_f/2t_f, \lambda_f=$	TAB("AISC/W";bf/2tf;NAME=sec.)	=	9.47
$\begin{split} \lambda_{pf} &= 0.38^* \sqrt{(E/F_y)} &= 9 \\ \lambda_{rf} &= 1.00^* \sqrt{(E/F_y)} &= 24 \\ FI_Class &= IF(\lambda_f \leq \lambda_{pf}, "Compact"; IF(\lambda_f > \lambda_{rf}, "Slender"; "Non-Compact")) &= Non-Compact \\ The available strength provided by AISC Specification Sections F3.1 and F3.2, the nominal flexural ris calculated as follows, satisfying the condition of compression Flange Local Buckling: \\ M_{n1a} &= M_p - 0.7^* F_y^* S_x^* 1/12 &= 175 \text{ kip*ft} \\ M_{n1} &= IF(FI_Class = "Compact"; M_p; (M_p - M_{n1a}^* (\frac{\lambda_f - \lambda_{pf}}{\lambda_{rf} - \lambda_{pf}}))) &= 441 \text{ kip*ft} \\ \textbf{al Torsional Buckling (LTB)} \\ The limiting lengths Lp and Lr are determined according to the AISC Spec. Eqns. F2-5 and F2-6, as \\ L_p &= 1.76^* r_y^* \sqrt{(E/F_y)/12} &= 5.86 \text{ ft} \\ L_{r1} &= \sqrt{\frac{J^* 1.0}{S_x * h_0}} &= 0.02 \\ L_{r2} &= \sqrt{1 + \sqrt{6.76 * \left(\frac{0.7^* F_y * S_x * h_0}{E^* J^* 1.0}\right)^2}} &= 2.89 \end{split}$			iness r	atios for the
$\begin{split} \lambda_{rr} &= 1.00^* \sqrt{(E/F_y)} &= 24 \\ FI_Class= IF(\lambda_{rf} \leq \lambda_{pf}, "Compact"; IF(\lambda_{rf} > \lambda_{rf}, "Slender"; "Non-Compact")) &= Non-Compact \\ The available strength provided by AISC Specification Sections F3.1 and F3.2, the nominal flexural riscalculated as follows, satisfying the condition of compression Flange Local Buckling: \\ M_{n1a} = M_p - 0.7*F_y*S_x*1/12 &= 175 \text{ kip*ft} \\ M_{n1} = IF(FI_Class="Compact"; M_p; (M_p - M_{n1a}*(\frac{\lambda_f - \lambda_{pf}}{\lambda_{rf} - \lambda_{pf}}))) &= 441 \text{ kip*ft} \\ \textbf{ral Torsional Buckling (LTB)} \\ The limiting lengths Lp and Lr are determined according to the AISC Spec. Eqns. F2-5 and F2-6, as \\ L_p = 1.76*r_y*\sqrt{(E/F_y)/12} &= 5.86 \text{ ft} \\ L_{r1} = \sqrt{\frac{J^*1.0}{S_x*h_o}} &= 0.02 \\ L_{r2} = \sqrt{1+\sqrt{6.76*(\frac{0.7*F_y*S_x*h_o}{E*J^*1.0})^2}} &= 2.89 \end{split}$	compression flange a			
$FI_Class= IF(\lambda_{f} \leq \lambda_{pf}:"Compact"; IF(\lambda_{f} > \lambda_{rf}:"Slender"; "Non-Compact")) = Non-CompactThe available strength provided by AISC Specification Sections F3.1 and F3.2, the nominal flexural rest is calculated as follows, satisfying the condition of compression Flange Local Buckling: M_{n1a} = M_{p} \cdot 0.7^{*}F_{y} \cdot S_{x} \cdot 1/12 = 175 \text{ kip}^{*}ft M_{n1} = IF(FI_Class="Compact"; M_{p}; (M_{p} \cdot M_{n1a} \cdot (\frac{\lambda_{f} - \lambda_{pf}}{\lambda_{rf} - \lambda_{pf}}))) = 441 \text{ kip}^{*}ft ral Torsional Buckling (LTB)The limiting lengths Lp and Lr are determined according to the AISC Spec. Eqns. F2-5 and F2-6, asL_{p} = 1.76^{*}r_{y}^{*}\sqrt{(E/F_{y})}/12 = 5.86 \text{ ft} L_{r1} = \sqrt{\frac{J^{*}1.0}{S_{x} \cdot h_{0}}} = 0.02 L_{r2} = \sqrt{1 + \sqrt{6.76 \cdot \left(\frac{0.7^{*}F_{y} \cdot S_{x} \cdot h_{0}}{E^{*}J^{*}1.0}\right)^{2}} = 2.89$	$\lambda_{pf} =$,	=	9
The available strength provided by AISC Specification Sections F3.1 and F3.2, the nominal flexural r is calculated as follows, satisfying the condition of compression Flange Local Buckling: $M_{n1a} = M_{p} - 0.7^{*}F_{y}^{*}S_{x}^{*1}/12 = 175 \text{ kip}^{*}\text{ft}$ $M_{n1} = IF(FI_Class="Compact"; M_{p}; (M_{p} - M_{n1a}^{*}(\frac{\lambda_{f}^{-}\lambda_{pf}}{\lambda_{rf}^{-}\lambda_{pf}}))) = 441 \text{ kip}^{*}\text{ft}$ al Torsional Buckling (LTB) The limiting lengths Lp and Lr are determined according to the AISC Spec. Eqns. F2-5 and F2-6, as $L_{p} = 1.76^{*}r_{y}^{*}\sqrt{(E/F_{y})}/12 = 5.86 \text{ ft}$ $L_{r1} = \sqrt{\frac{J^{*}1.0}{S_{x}^{*}h_{0}}} = 0.02$ $L_{r2} = \sqrt{\frac{1 + \sqrt{6.76^{*}(\frac{0.7^{*}F_{y}^{*}S_{x}^{*}h_{0}}{E^{*}J^{*}1.0}}^{2}} = 2.89$	$\lambda_{rf} =$	1.00*√(E/F _y)	=	24
is calculated as follows, satisfying the condition of compression Flange Local Buckling: $M_{n1a} = M_{p} \cdot 0.7^{*}F_{y}^{*}S_{x}^{*}1/12 = 175 \text{ kip}^{*}\text{ft}$ $M_{n1} = IF(FI_Class="Compact"; M_{p}; (M_{p} - M_{n1a}^{*}(\frac{\lambda_{f} - \lambda_{pf}}{\lambda_{rf} - \lambda_{pf}}))) = 441 \text{ kip}^{*}\text{ft}$ al Torsional Buckling (LTB) The limiting lengths Lp and Lr are determined according to the AISC Spec. Eqns. F2-5 and F2-6, as $L_{p} = 1.76^{*}r_{y}^{*}\sqrt{(E/F_{y})}/12 = 5.86 \text{ ft}$ $L_{r1} = \sqrt{\frac{J^{*}1.0}{S_{x}^{*}h_{0}}} = 0.02$ $L_{r2} = \sqrt{1 + \sqrt{6.76^{*}(\frac{0.7^{*}F_{y}^{*}S_{x}^{*}h_{0}})^{2}} = 2.89$	FI_Class= IF(λ _f ≤	λ _{pf} ;"Compact";IF(λ _f >λ _{rf} ;"Slender";"Non-Compact"))	=	Non-Compact
$\begin{split} M_{n1a} &= M_{p} - 0.7^{*} F_{y} * S_{x} * 1/12 &= 175 \text{ kip} * \text{ft} \\ M_{n1} &= \text{IF}(\text{FI}_C \text{Class} = \text{"Compact"}; M_{p}; (M_{p} - M_{n1a} * (\frac{\lambda_{f} - \lambda_{pf}}{\lambda_{rf} - \lambda_{pf}}))) &= 441 \text{ kip} * \text{ft} \\ \text{al Torsional Buckling (LTB)} \\ \text{The limiting lengths Lp and Lr are determined according to the AISC Spec. Eqns. F2-5 and F2-6, as} \\ L_{p} &= 1.76^{*} r_{y} * \sqrt{(\text{E/F}_{y})/12} &= 5.86 \text{ ft} \\ L_{r1} &= \sqrt{\frac{J^{*} 1.0}{S_{x} * h_{o}}} &= 0.02 \\ \\ L_{r2} &= \sqrt{\frac{1 + \sqrt{6.76 * \left(\frac{0.7^{*} F_{y} * S_{x} * h_{o}}{\text{E} * J * 1.0}\right)^{2}}} &= 2.89 \end{split}$	The available strength	provided by AISC Specification Sections F3.1 and F3.	2, the r	nominal flexural morr
$M_{n1} = IF(FI_Class="Compact"; M_p; (M_p-M_{n1a}^*(\frac{\lambda_f - \lambda_{pf}}{\lambda_{rf} - \lambda_{pf}}))) = 441 \text{ kip*ft}$ ral Torsional Buckling (LTB) The limiting lengths Lp and Lr are determined according to the AISC Spec. Eqns. F2-5 and F2-6, as $L_p = 1.76^* r_y^* \sqrt{(E/F_y)/12} = 5.86 \text{ ft}$ $L_{r1} = \sqrt{\frac{J^*1.0}{S_x^*h_o}} = 0.02$ $L_{r2} = \sqrt{1 + \sqrt{6.76^* \left(\frac{0.7^*F_y^*S_x^*h_o}{E^*J^*1.0}\right)^2}} = 2.89$	is calculated as follow	s, satisfying the condition of compression Flange Local	Bucklin	ng:
The limiting lengths Lp and Lr are determined according to the AISC Spec. Eqns. F2-5 and F2-6, as $L_{p} = 1.76^{*}r_{y}^{*}\sqrt{(E/F_{y})}/12 = 5.86 \text{ ft}$ $L_{r1} = \sqrt{\frac{J^{*}1.0}{S_{x}^{*}h_{o}}} = 0.02$ $L_{r2} = \sqrt{1 + \sqrt{6.76^{*}\left(\frac{0.7^{*}F_{y}^{*}S_{x}^{*}h_{o}}{E^{*}J^{*}1.0}\right)^{2}}} = 2.89$	M _{n1a} =	M _p -0.7*F _y *S _x *1/12	=	175 kip*ft
The limiting lengths Lp and Lr are determined according to the AISC Spec. Eqns. F2-5 and F2-6, as $L_{p} = 1.76^{*}r_{y}^{*}\sqrt{(E/F_{y})}/12 = 5.86 \text{ ft}$ $L_{r1} = \sqrt{\frac{J^{*}1.0}{S_{x}^{*}h_{o}}} = 0.02$ $L_{r2} = \sqrt{1 + \sqrt{6.76^{*}\left(\frac{0.7^{*}F_{y}^{*}S_{x}^{*}h_{o}}{E^{*}J^{*}1.0}\right)^{2}}} = 2.89$	M _{n1} =	IF(FI_Class="Compact"; M_p ; $(M_p - M_{n1a}^*(\frac{\lambda_f - \lambda_{pf}}{\lambda_{rf} - \lambda_{pf}})))$	=	441 kip*ft
$L_{p} = 1.76^{*}r_{y}^{*}\sqrt{(E/F_{y})}/12 = 5.86 \text{ ft}$ $L_{r1} = \sqrt{\frac{J^{*}1.0}{S_{x}^{*}h_{0}}} = 0.02$ $L_{r2} = \sqrt{\sqrt{1 + \sqrt{6.76^{*}\left(\frac{0.7^{*}F_{y}^{*}S_{x}^{*}h_{0}}{E^{*}J^{*}1.0}\right)^{2}}} = 2.89$	al Torsional Buckling (LTB)		
$L_{r1} = \sqrt{\frac{J^* 1.0}{S_x * h_o}} = 0.02$ $L_{r2} = \sqrt{\frac{1 + \sqrt{6.76 * \left(\frac{0.7 * F_y * S_x * h_o}{E * J * 1.0}\right)^2}} = 2.89$	The limiting lengths L	and Lr are determined according to the AISC Spec. E	qns. F2	2-5 and F2-6, as follo
$L_{r2} = \sqrt{1 + \sqrt{6.76 + \left(\frac{0.7 + F_y + S_x + h_o}{E + J + 1.0}\right)^2}} = 2.89$	L _p =	1.76*r _y *√(E/F _y)/12	=	5.86 ft
$L_{r2} = \sqrt{1 + \sqrt{6.76 + \left(\frac{0.7 + F_y + S_x + h_o}{E + J + 1.0}\right)^2}} = 2.89$	_	J*1.0		
	L _{r1} =	$\sqrt{s_x * h_o}$	=	0.02
$L_r = 1.95/12*r_{ts}*\frac{E}{0.7*F_y}*L_{r1}*L_{r2} = 15.95 \text{ ft}$	L _{r2} =		=	2.89
	L _r =	1.95/12*r _{ts} * E 0.7*F _y * L _{r1} *L _{r2}	=	15.95 ft
Interactive Design Aids for Structural Engineers				

Chapter 3: Steel Design W-Shapes in Strong Axis Bending, Braced at Some Points

AISC Page: 104

	Case=	IF(L _b >L _r ;"ELTB";IF(L _b ≤L _p ; "No LTB";"InLTB"))	=	ELTB		
		ic LTB. and "InLTB" refers to Inelastic LTB.)				
	According to the AISC Spec. Eqn. F2-2:					
	M ₁ =	MIN(M _p ; C _b *(M _p -(M _p -0.7*1/12*F _y *S _x)*(L _b -L _p)/(L _r -L _p)))	=	367 kip*ft		
	According to the AISC Spec. Eqn. F2-4:					
	F _{cr} =	$C_b^* \pi^{2*} E/((L_b^+ 0.01)^* 12/r_{ts})^2$	=	40.87 ksi		
	F _{cr,mod} =	$\sqrt{(1+0.078*J*1.0/(S_x*h_o)*(L_b*12/r_{ts})^2)}$	=	1.16 ksi		
	According to the AISC	Spec. Eqns. F2-3:				
	M ₂ =	MIN(M _p ;F _{cr} *S _x /12*F _{cr,mod})	=	367 kip*ft		
	According to the AISC Spec. Eqn. F2-2:					
	M _{n2} =	IF (Case="No LTB";M _p ;IF(Case="InLTB";M ₁ ;M ₂))	=	367 kip*ft		
Check	The Available Flexure	Strength				
	ΦM _n =	0.90*MIN(M _p ;M _{n1} ;M _{n2})	=	330 kip*ft		
	Safety=	$IF(\Phi M_n \ge M_u;"Safe";"Unsafe")$	=	Safe		
	Moment_ratio=	M _u /ΦM _n	=	0.61		
Check	Shear Strength					
	h/t _w , λ _w =	TAB("AISC/W";h/t _w ;NAME=sec.)	=	53.60		
	$\lambda_{w0} =$	2.24*√(E/F _y)	=	54		
	λ _{w1} =	1.10*√(5*E/F _y)	=	59		
	$\lambda_{w2} =$	1.37*√(5*E/F _y)	=	74		
	Except for very few sections, which are listed in the User Note, AISC Specification Section G2.1(a) is applicable to the I-shaped beams published in the AISC Manual for Fy f - 50 ksi. Cv is calculated exactly according to Eqns. G2-2, G2-3, G2-4, and G2-5					
	C _{va} =	$1.51*5*E/(F_y*\lambda_w^2)$	=	1.52		
	C _v =	$IF(\lambda_w \leq \lambda_{w0}; 1; IF((\lambda_w > \lambda_{w1} AND \ \lambda_w \leq \lambda_{w2}); \lambda_{w1}/I_w; C_{va}))$	=	1.00		
	From AISC Specification Section G2.1b,					
	A _w =	d*t _w	=	7 in ²		
	From AISC Specification Section G2.1, the available shear strength is:					
	V _n =	$0.6*F_y*A_w*C_v$	=	210 kips		
	Φ_v =			1.00		
	$\Phi_v V_n =$	$\Phi_v * V_n$	=	210 kips		
	Shear_safety=	IF(Φ _v *V _n >Q _u ;"Safe";"Unsafe")	=	Safe		
		aractive Design Aids for Structural Engines				

AISC Page: 105

Check	Check Deflection					
	Δ_{all} =	12*L/360	=	1.17 in		
	W _{eq} (LL), W _L =	$\frac{8*M_{L}}{L^{2}}$	=	0.91 kip/ft		
	Δ_{act} =	$12^{3} * \frac{5^{*}W_{L}*L^{4}}{384^{*}E^{*}I_{x}}$	=	1.10 in		
	Deflection safety (D _s):					
	D _s =	$IF(\Delta_{all} \ge \Delta_{act}; "Safe"; "Unsafe")$	=	Safe		
Desig	n Summary					
	ΦM_n =	0.90*MIN(M _p ;M _{n1} ;M _{n2})	=	330 kip*ft		
	Safety=	$IF(\Phi M_n \ge M_u;"Safe";"Unsafe")$	=	Safe		
	Moment_ratio=	Μ _u /ΦM _n	=	0.61		
	$\Phi_v V_n =$	$\Phi_v^* V_n$	=	210 kips		
	Shear_safety=	$IF(\Phi_v * V_n > Q_u; "Safe"; "Unsafe")$	=	Safe		
	Δ_{all} =	12*L/360	=	1.17 in		
	Δ_{act} =	$12^{*} \frac{5^{*}W_{L}^{*}L^{4}}{384^{*}E^{*}I_{x}}$	=	0.01 in		
	D _s =	$IF(\Delta_{all} \ge \Delta_{act}; "Safe"; "Unsafe")$	=	Safe		

	m continuously braced	M _x	
Materials			
Grade:	SEL("Material/ASTM";NAME;)	=	A992
F _y =	TAB("Material/ASTM";F _y ;NAME=Grade)	=	50 ksi
E=			29000 ksi
Beam Length and Cb			
Total length, L=			35.00 ft
Design Moments and Unifo			
Ultimate moment, M	-		200.00 kip*fl
Ultimate moment du	e to live load case, M _L =		140.00 kip*fl
Ultimate shear, Q _u =			30.00 kips
Section Details			
sec.:	SEL("AISC/W";NAME;)	=	W21X48
depth, d=	TAB("AISC/W";d;NAME=sec.)	=	20.60 in
Web th., t _w =	TAB("AISC/W";t _w ;NAME=sec.)	=	0.35 in
Flange width, b _f =	TAB("AISC/W";b _{f,} NAME=sec.)	=	8.14 in
Flange th., t _f =	TAB("AISC/W";t _f ;NAME=sec.)	=	0.43 in
Plastic sec. modulus	s, Z _x = TAB("AISC/W";Z _x ;NAME=sec.)	=	107.00 in ³
Elastic sec. modulus	s, S _x = TAB("AISC/W";S _x ;NAME=sec.)	=	93.00 in ³
Inertia about x-axis,	I _x = TAB("AISC/W";I _x ;NAME=sec.)	=	959.00 in ⁴
r _y =	TAB("AISC/W";r _y ;NAME=sec.)	=	1.66 in
r _{ts} =	TAB("AISC/W";r _{ts} ;NAME=sec.)	=	2.05 in
(r _y is radius of gyrat	ion about y-axis and r _{ts} : is effective radius of gyratio	n for the L.	Т.В.)
Torsional constant,	J= TAB("AISC/W";J;NAME=sec.)	=	0.80 in ⁴
h _o =	TAB("AISC/W";h _o ;NAME=sec.)	=	20.20 in
(h _o is the distance b	etween C.L. of flanges)		
AISC Specification E	Eqn. (F2-1):		
Yielding Moment, M	$_{0} = Z_{x}^{*}F_{y}^{*}1/12$	=	446 kip*ft

Element Classification						
	(1) Web:					
	h/t _w , λ _w =	TAB("AISC/W";h/t _w ;NAME=sec.)	=	53.60		
	According to AISC Specification Table B4.1 Case 9, the limiting width-to-thickne			atio for the web is:		
	Web_Class=	$IF(\lambda_w \leq 3.76* \sqrt{(E/F_y)};"Compact"; "Non-Compact")$	=	Compact		
	(2) Comp. flang	ge:				
	$b_f/2t_f, \lambda_f=$	TAB("AISC/W";b _f /2t _f ;NAME=sec.)	=	9.47		
	According to A compression fla	ISC Specification Table B4.1 Case 1, the limiting width-to-thick ange are:	ness r	atios for the		
	λ _{pf} =	0.38*√(E/F _y)	=	9		
	λ _{rf} =	1.00*√(E/F _y)	=	24		
	FI_Class=	IF(λ _f ≤λ _{pf} ;"Compact";IF(λ _f >λ _{rf} ;"Slender";"Non-Compact"))	=	Non-Compact		
	Because the beam is continuously braced, and therefore not subjected to lateral-torsional buckling, the available strength is governed by AISC Specification Sections F3.1 and F3.2. The nominal flexural moment is calculated as follows, satisfying the condition of compression Flange Local Buckling:					
	$M_{n1a} = M_p - 0.7 F_y S_x 1/12 = 1$		= 174.75 kip*ft			
	M _{n1} =	IF(FI_Class="Compact"; M _p ; (M _p -(M _{n1a})*(^{λ_f -λ_{pf}/_{λ_{rf} -λ_{pf})))}}		= 441 kip*ft		
Check	The Available I	Flexure Strength				
	ΦM_n =	0.90*MIN(M _p ;M _{n1})	=	397 kip*ft		
	Safety=	IF(⊕M _n ≥M _u ;"Safe";"Unsafe")	=	Safe		
	Moment_ratio=	· M _u /ΦM _n	=	0.50		
Check Shear Strength						
	h/t _w , λ_w =	TAB("AISC/W";h/tw;NAME=sec.)	=	53.6		
	$\lambda_{w0} =$	2.24*√(E/Fy)	=	53.9		
	$\lambda_{w1} =$	1.10*√(5*E/F _y)	=	59.2		
	$\lambda_{w2} =$	1.37*√(5*E/F _y)	=	73.8		
	Except for very few sections, which are listed in the User Note, AISC Specification Section G2.1(a) is					
	applicable to the I-shaped beams published in the AISC Manual for F_y = 50 ksi. C_v is calculated exactly					
	according to Eqns. G2-2, G2-3, G2-4, and G2-5					
	C _v =	$IF(\lambda_{W} \leq \lambda_{W0}; 1; IF((\lambda_{W} > \lambda_{W1} AND \lambda_{W} \leq \lambda_{W2}); \lambda_{W1}/\lambda_{W}; 1.51*5*E/(F_{Y}*\lambda_{W1}) \times E/(F_{Y}*\lambda_{W1}) \times E/(F/W1) \times E/(W1) \times E/(F/W1) \times E/(F/W1) \times E/(F/W1) \times E/(W1) \times$	²)))=	1.00		

	From AISC Specification Section G2.1b,				
	A _w =	d*t _w	=	7 in ²	
	From AISC Specification Section G2.1, the available shear strength is:				
	V _n =	0.6*F _y *A _w *C _v	=	210 kips	
	Φ_{v} =			1.00	
	$\Phi_v V_n =$	$\Phi_v * V_n$	=	210 kips	
	Shear_safety=	$IF(\Phi_v * V_n > Qu; "Safe"; "Unsafe")$	=	Safe	
Check	Deflection				
	Δ_{all} =	12*L/360	=	1.17 in	
	W _{eq} (LL), W _L =	$\frac{8*M_L}{L^2}$	=	0.91 kip/ft	
	Δ_{act} =	12 ³ * $\frac{5 * W_{L} * L^{4}}{384 * E * I_{x}}$	=	1.10 in	
	Deflection safety (D _s):				
	Ds=	$IF(\Delta_{all} \ge \Delta_{act}; "Safe"; "Unsafe, increase section")$	=	Safe	
Design Summary					
	ΦM_n =	0.90*MIN(M _p ;M _{n1})	=	397 kip*ft	
	Safety=	IF(⊕M _n ≥M _u ;"Safe";"Unsafe")	=	Safe	
	Moment_ratio=	Μ _u /ΦM _n	=	0.50	
	Δ_{all} =	12*L/360	=	1.17 in	
	Δ_{act} =	$12^{*} \frac{5^{*}W_{L}^{*}L^{4}}{384^{*}E^{*}I_{x}}$	=	0.01 in	
	Ds=	$IF(\Delta_{all} \ge \Delta_{act}; "Safe"; "Unsafe, increase section")$	=	Safe	

W-Shape in Minor Axis Bending

Z			
terials			
Grade:	SEL("Material/ASTM"; NAME;)	=	A992
F _y =	TAB("Material/ASTM";F _y ;NAME=Grade)	=	50 ksi
E=			29000 ksi
am Length			35.00 ft
Total length, L=			35.00 II
sign Moments and Uniform Liv			266 00 kin* ft
Ultimate moment in minor-a	xis, m _{yu} =		266.00 kip*ft
Ultimate shear force, Q_{xu} =			20.00 kips
ction Details			
SEC.:	SEL("AISC/W";NAME;)	=	W24X131
depth, d=	TAB("AISC/W";d;NAME=sec.)	=	24.50 in
Web th., t _w =	TAB("AISC/W";t _w ;NAME=sec.)	=	0.60 in
Flange width, b _f =	TAB("AISC/W";b _f ;NAME=sec.)	=	12.90 in
Flange th., t _f =	TAB("AISC/W";t _f ;NAME=sec.)	=	0.96 in
Plastic soc. modulus. 7 -	TAB("AISC/W";Z _y ;NAME=sec.)	=	81.50 in ³
Plastic sec. modulus, Z _y =			53.00 in ³
Elastic sec. modulus, Z_y^-	TAB("AISC/W";S _y ;NAME=sec.)	=	00.00
,	, ,	=	00.00

W-Shape in Minor Axis Bending

Flanges:

Flanges:			
$b_f/2t_f, \lambda_f=$	TAB("AISC/W";b _f /2t _f ;NAME=sec.)	=	6.7
According to AISC Specificatio compression flange are:	n Table B4.1 Case 1, the limiting width-to-thic	kness ra	atios for the
λ_{pf} =	0.38*√(E/F _y)	=	9.2
λ _{rf} =	1.0*√(E/F _y)	=	24.1
FI_Class=	IF(λ _f ≤λ _{pf} ;"Compact";"Non-Compact")	=	Compact
Sections F6.1 and F6.2. The n compression Flange Local Bud	-	s, satisf	•
M _{n1} = IF(FI_Class="Compac	t"; M _p ; (M _p -(M _p -0.7*F _y *S _y *1/12)*($\frac{\lambda_{f} - \lambda_{pf}}{\lambda_{rf} - \lambda_{pf}}$)))	=	340 kip*ft
Check The Available Flexure Streng	th		
ΦM_n =	0.90*MIN(M _p ;M _{n1})	=	306 kip*ft
Safety=	IF(ΦM _n ≥M _{yu} ;"Safe";"Unsafe")	=	Safe
Moment ratio=	Μ _{yu} /ΦM _n	=	0.87
Check Shear Strength Section G (Al	SC Spec.)		
Calculate A _w . (Multiply by 2 for	both shear resisting elements.)		
A _w =	2*b _f *t _f	=	24.77 in ²
Calculate Cv: (Eqns. G2-2, G2	-3, G2-4 and G2-5)		
b _f /2t _f , λ _f =	TAB("AISC/W";b _f /2t _f ;NAME=sec.)	=	6.70
k _v =			1.20
Ψ _{f1} =	1.1*√(k _v *E/F _y)	=	29.0
ψ _{f2} =	1.37*√(k _v *E/F _y)	=	36.1
C_v = IF($\lambda f \le \psi f1;1;$ IF($\lambda f > \psi f1$	AND λf≤ψf2;ψf1/λf;1.51*kv*E/(Fy*λf^2)))	=	1.0
From AISC Specification Section	on G2.1, the available shear strength is:		
Φ_v =			0.90
Nominal shear strength, V_n =	$0.6*F_y*A_w*C_v$	=	743 kips
Design shear, ΦV_n =	$\Phi_v * V_n$	=	669 kips
Shear_safety=	IF(V _n >Q _{xu} ; "Safe"; "Unsafe")	=	Safe

W-Shape in Minor Axis Bending

Design Summary

ΦM_n =	0.90*MIN(M _p ;M _{n1})	=	306 kip*ft
Safety=	IF(ΦM _n ≥M _{yu} ;"Safe";"Unsafe")	=	Safe
Moment ratio=	Μ _{yu} /ΦM _n	=	0.87
Design shear, ΦV_n =	$\Phi_{v} * V_{n}$	=	669 kips
Shear_safety=	IF(V _n >Q _{xu} ; "Safe"; "Unsafe")	=	Safe

Chapter 3: Steel Design W-Shape Subjected to Tension Force and Bending Moments

		у —	
terials			
Grade:	SEL("Material/ASTM"; NAME;)	=	A992
F _y =	TAB("Material/ASTM";F _y ;NAME=Grade)	=	50 ksi
E=		:	29000 ksi
am Length			
Unsupported ler	ngth, L _b =		30.00 ft
kL _{in} =			14.00 ft
kL _{out} =			30.00 ft
(kL _{in} and kL _{out} a	are the strong and weak/torsional unbraced lengths, respe	ectively)	
From Table 3-1	(AISC), C _{b1} =		1.14
ven Straining Actior	IS		
Dead Load:			
T _D =			29.0 kips
M _{xD} =			32.0 kip*ft
M _{yD} =			11.3 kip*ft
Live Load:			
T _L =			87.0 kips
M _{xL} =			96.0 kip*ft
M _{yL} =			33.8 kip*ft
mate Tension Forc	e and Bending Moments		
T _u =	1.2*T _D +1.6*T _L	=	174.0 kips
M _{ux} =	1.2*M _{xD} +1.6*M _{xL}	=	192.0 kip*ft
M _{uy} =	1.2*M _{vD} +1.6*M _{vL}	=	67.6 kip*ft

AISC Page: 113

Section Details			
sec.:	SEL("AISC/W";NAME;)	= V	V14X82
depth, d=	TAB("AISC/W";d;NAME=sec.)	=	14.30 in
Web th., t _w =	TAB("AISC/W";t _w ;NAME=sec.)	=	0.51 in
Flange width, b _f =	TAB("AISC/W";b _f ;NAME=sec.)	=	10.10 in
Flange th., t _f =	TAB("AISC/W";t _f ;NAME=sec.)	=	0.85 in
Gross Area, A=	TAB("AISC/W";A;NAME=sec.)	=	24.00 in ²
I _x =	TAB("AISC/W";I _x ;NAME=sec.)	=	881.00 in ⁴
l _y =	TAB("AISC/W";I _y ;NAME=sec.)	=	148.00 in ⁴
(I _x and I _y are the momen	t of inertia about x-and y-axes, respectively)		
Plastic sec. modulus, Z _x =	= TAB("AISC/W";Z _x ;NAME=sec.)	=	139.00 in ³
Elastic sec. modulus, S _x :	= TAB("AISC/W";S _x ;NAME=sec.)	=	123.00 in ³
Plastic sec. modulus, Z _y -	= TAB("AISC/W";Z _y ;NAME=sec.)	=	44.80 in ³
Elastic sec. modulus, S _y	= TAB("AISC/W";S _y ;NAME=sec.)	=	29.30 in ³
r _x =	TAB("AISC/W";r _x ;NAME=sec.)	=	6.05 in
r _y =	TAB("AISC/W";r _y ;NAME=sec.)	=	2.48 in
(r _x and r _y are the radius o	of gyration about x- and y-axis, respectively)		
Torsional constant, J=	TAB("AISC/W";J;NAME=sec.)	=	5.07 in ⁴
r _{ts} =	TAB("AISC/W";r _{ts} ;NAME=sec.)	=	2.85 in
h _o =	TAB("AISC/W";h _o ;NAME=sec.)	=	13.40 in
(r _{ts} is the Effective radius	s of gyration for the L.T.B. and h _o is distance betwe	en C.L. o	f flanges)
AISC Specification Eqn.	(F6-1), the yielding moment in minor axis (M_{py}) :		
M _{py} =	MIN (Z _y *F _y *1/12;1.6/12*S _y *F _y)	=	187 kip*ft
Slenderness Check (According	to section E2)		
For members designed of	on the basis of compression, the slenderness ratio	KL/r shou	Ild not exceed 300.
λ _x =	$\frac{kL_{in}}{r_x}$ *12	=	27.8
$\lambda_y =$	$\frac{kL_{out}}{r_{y}}$ *12	=	145.2
Then, the governed slend	derness (λ _{max}):		
λ _{max} =	$MAX(\lambda_{X};\lambda_{y})$	=	145.2
Slenderness_check=	IF(λ _{max} ≤300; "Safe"; "Unsafe")	=	Safe
Interactive Design Aids for Structural Engineers			

AISC Page: 114

InLTB

=

Nominal Tensile Strength

From AISC Specification Section D2(a), the nominal tensile strength due to tensile yielding on the gross section is:

$$T_n = F_y^* A = 1200.0 \text{ kips}$$

Nominal Flexural Strength about x-x Axis

Yielding: from AISC specification section F2.1, the nominal flexural strength due to yielding (plastic moment) is:

$$M_{px}$$
 = $Z_x F_v 1/12$ = 579 kip*ft

Lateral torsional buckling (LTB): the limiting lengths L_p and L_r are determined according to the AISC spec. eqns. F2-5 and F2-6, as follows:

$$L_{p} = 1.76^{*}r_{y}^{*}\sqrt{(E/F_{y})}/12 = 8.76 \text{ ft}$$

$$L_{r1} = \sqrt{\frac{J^{*}1.0}{S_{x}^{*}h_{o}}} = 0.06$$

$$\sqrt{1 + \sqrt{6.76 + \left(\frac{0.7 + F_y + S_x + h_o}{E + J + 1.0}\right)^2}} = 1.42$$

$$L_r = 1.95/12^* r_{ts}^* \frac{E}{0.7^* F_y}^* L_{r1}^* L_{r2} = 32.69 \text{ ft}$$

 $IF(L_b>L_r;"ELTB";IF(L_b\leq L_p; "No LTB";"InLTB"))$

Case=

L

("ELTB" refers to elastic lateral torsional buckling and "InLTB" refers to inelastic lateral torsional buckling). The lateral torsional buckling modification factor, C_b:

$$T_{ey} = \frac{\pi^2 * E * I_y}{(L_b * 12)^2} = 326.9 \text{ kips}$$

$$C_b = C_{b1} * \sqrt{1 + \frac{T_u}{T_{ey}}} = 1.41$$

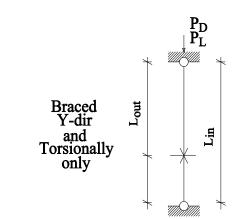
According to the AISC Spec. Eqn. F2-2:

$$M_{1a} = M_{px} - 0.7^{*1/12*} F_{y}^{*} S_{x} = 220 \text{ kip*ft}$$

$$M_{1} = MIN(M_{px}; C_{b}^{*}(M_{px} - M_{1a}^{*}(L_{b} - L_{p}))) = 541 \text{ kip*ft}$$

According to the AISC Spec. Eqn. F2-4: $\frac{{C_b}^*{\pi^2}^*{E}}{{\left(\!{\frac{\left({L_b}^{+0.01}^{}\right)^*{12}^{}}_{r_{ts}}^{}}\right)^2}}$ F_{cr}= 25.28 ksi $\sqrt{1 + \frac{0.078 * J * 1.0}{S_{*} * h_{c}} * \left(\frac{L_{b} * 12}{r_{c}}\right)^{2}}$ F_{cr.mod}= 2.20 ksi = According to the AISC Spec. Eqns. F2-3: $M_2 =$ $MIN(M_{px};F_{cr}*S_x/12*F_{cr.mod})$ = 570 kip*ft According to the AISC Spec. Eqn. F2-2: $M_{nx2} =$ IF (Case="No LTB";M_{px};IF(Case="InLTB";M₁;M₂)) = 541 kip*ft **Element Classification** (1) Web: h/tw, $\lambda_w =$ TAB("AISC/W";h/t_w;NAME=sec.) 22.40 = According to AISC Specification Table B4.1 Case 9, the limiting width-to-thickness ratio for the web is: IF($\lambda_w \leq 3.76 * \sqrt{(E/F_v)}$;"Compact"; "Non-Compact") Web_Class= = Compact (2) Comp. flange: TAB("AISC/W";b_f/2t_f;NAME=sec.) 5.92 $b_f/2t_f \lambda_f =$ = According to AISC Specification Table B4.1 Case 1, the limiting width-to-thickness ratios for the compression flange are: 0.38*√(E/F_v) 9 $\lambda_{pf} =$ 1.00*√(E/F_v) 24 $\lambda_{rf} =$ FI Class= $IF(\lambda_f \leq \lambda_{pf}; "Compact"; IF(\lambda_f > \lambda_{rf}; "Slender"; "Non-Compact"))$ = Compact The available strength provided by AISC Specification Sections F3.1, F3.2, F6.1 and F6.2, the nominal flexural moments in strong/weak axes are calculated as follows, satisfying the condition of compression Flange Local Buckling: M_{px} -0.7* F_{v} * S_{x} *1/12 220 kip*ft $M_{nx1a} =$ IF(FI_Class="Compact"; M_{px} ; M_{px} - $M_{nx1a}^*(\frac{\lambda_f - \lambda_{pf}}{\lambda_{rf} - \lambda_{pf}})) = 579 \text{ kip*ft}$ $M_{nx1} =$ M_{py}-0.7*F_y*S_y*1/12 102 kip*ft M_{ny1a}= $\mathsf{IF}(\mathsf{FI_Class}=\mathsf{"Compact"}; \mathsf{M}_{\mathsf{py}}; \mathsf{M}_{\mathsf{py}}-\mathsf{M}_{\mathsf{ny1a}}^{*}(\frac{\lambda_{\mathsf{f}}-\lambda_{\mathsf{pf}}}{\lambda_{\mathsf{rf}}-\lambda_{\mathsf{pf}}})) =$ 187 kip*ft M_{nv1}=

Chapter 3: Steel Design W-Shape Subjected to Tension Force and Bending Moments


AISC Page: 116

Design Flexure Moment in Ma	ajor/Minor Axes		
M _{nx} =	$MIN(M_{px};M_{nx1};M_{nx2})$	=	541 kip*ft
M _{ny} =	MIN(M _{py} ;M _{ny1})	=	187 kip*ft
Calculate The Available Flexu	ral and Axial Strengths		
Φ_{b} =			0.90
Φ_t =			0.90
T _c =	$\Phi_t * T_n$	=	1080 kips
M _{cx} =	$\Phi_{b} * M_{nx}$	=	487 kip*ft
M _{cy} =	$\Phi_{\sf b}$ * M _{ny}	=	168 kip*ft
nteraction of Tension and Fle	exure		
Check limit for AISC Sp	ecification Equation H1-1a.		
Tension_ratio, t=	T _u T _c	=	0.16
Moment_ratio, m=	$\frac{M_{ux}}{M_{cx}} + \frac{M_{uy}}{M_{cy}}$	=	0.80
Safety_ratio, r=	IF(t ≥0.2; t+8/9*m; t/2+m)	=	0.88
Safety=	IF(r≤1;"Safe";"Unsafe")	=	Safe
esign Summary			
T _u =	1.2*T _D +1.6*T _L	=	174.0 kips
M _{ux} =	1.2*M _{xD} +1.6*M _{xL}	=	192.0 kip*ft
M _{uy} =	1.2*M _{yD} +1.6*M _{yL}	=	67.6 kip*ft
T _c =	$\Phi_t * T_n$	=	1080 kips
M _{cx} =	$\Phi_{\sf b}$ * M _{nx}	=	487 kip*ft
M _{cy} =	$\Phi_{b} * M_{ny}$	=	168 kip*ft
Slenderness_check=	IF(λ _{max} ≤300; "Safe"; "Unsafe")	=	Safe
Safety_ratio, r=	IF(t ≥0.2; t+8/9*m; t/2+m)	=	0.88
Safety=	IF(r≤1;"Safe";"Unsafe")	=	Safe

W-Shapes in Axial Compression

Design of W-Shapes Subjected to Axial Compression

Materials

Grade:	SEL("Material/ASTM"; NAME;)	=	A992
F _y =	TAB("Material/ASTM";F _y ;NAME=Grade)	=	50.00
E=		2	9000 ksi
kling Lengths			

Buck

kL _{in} =	30.00 ft
kL _{out} =	15.00 ft
(kL _{in} and kL _{out} are unbraced lengths for the strong- and weak-axes)	

Axial Loads

Dead load, P _D =		140 kips
Live load, P _L =		420 kips
From Chapter 2 of ASCE/SEI 7, the required compressive strength is:		
Ultimate load, P _u = 1.2*P _D +1.6*P _L	=	840 kips

Section Details

sec.:	SEL("AISC/W";NAME;)	=	W14X90
depth, d=	TAB("AISC/W";d;NAME=sec.)	=	14.00 in
Web th., t _w =	TAB("AISC/W";t _w ;NAME=sec.)	=	0.44 in
Flange width, b _f =	TAB("AISC/W";b _f ;NAME=sec.)	=	14.50 in
Flange th., t _f =	TAB("AISC/W";t _f ;NAME=sec.)	=	0.71 in
Area, A=	TAB("AISC/W";A;NAME=sec.)	=	26.50 in ²
r _x =	TAB("AISC/W";r _x ;NAME=sec.)	=	6.14 in
r _y =	TAB("AISC/W";r _y ;NAME=sec.)	=	3.70 in
(" and " are the redi	(a of a motion observes, and a super monopolitically)		

(r_x and r_y are the radius of gyration about x- and y-axes, respectively)

W-Shapes in Axial Compression

		· ·				
Element Classification (According to Table B4-1)						
	(1) Web:					
	h/t _w , λ _w =	TAB("AISC/W";h/t _w ;NAME=sec.)	=	25.90		
	According to AISC Spec web is:	cification Table B4.1 Case 10, the limiting width-to-thick	ness ra	atio for non-compact		
	Web_Class= (2) Flanges:	IF(λ _w ≤1.49∗√(E/F _y);"Non-Compact";"Slender")	=	Non-Compact		
	b _f /2t _f , λ _f =	TAB("AISC/W";b _f /2t _f ;NAME=sec.)	=	10.20		
	According to AISC Spennon-compact flange is:	cification Table B4.1 Case 4, the limiting width-to-thickn	ess ra	tio for		
	k _c =	MIN(MAX(4/√(λ _w);0.35);0.76)	=	0.76		
	λ _{rf} =	0.64*√(k _c *E/F _y)	=	13		
	FI_Class=	$IF(\lambda_{f} \leq \lambda_{rf};"Non-Compact";"Slender")$	=	Non-Compact		
Slende	erness Check (Accordin	ng to Section E2)				
	For members designed exceed 200.	on the basis of compression, the slenderness ratio KL/	r prefe	rably should not		
	λ _x =	$\frac{kL_{in}}{r_x}$ *12	=	58.6		
	λ _y =	$\frac{kL_{out}}{r_{y}}$ *12	=	48.6		
	Then, the governed sle	nderness (λ _{max}):				
	λ_{max} =	$MAX(\lambda_x;\lambda_y)$	=	58.6		
Critica	I Stresses					
	The available critical str follows:	esses may be interpolated from AISC Manual Table 4-2	22 or c	alculated directly as		
	-Calculate the elastic cr	itical buckling stress, F _e :				
	F _e =	$\frac{\pi^2 * E}{\lambda_{max}^2}$	=	83.3 ksi		
	-Calculate the flexural b	puckling stress, F _{cr} (Eqns. E3-2 and E3-3):				
	$\lambda_1 =$	4.71*√(E/F _y)	=	113		
	F _{cr} =	IF(λ _{max} ≤λ ₁ ; 0.658 ^(Fy / Fe) ∗F _y ;0.877*F _e)	=	38.9 ksi		

W-Shapes in Axial Compression

Nominal Compressive Strength (Eqn. E3-1)

	P _n =	F _{cr} *A	=	1031 kips	
	Φ _v =			0.90	
	$\Phi_v P_n =$	$\Phi_{v}^{*}P_{n}$	=	928 kips	
	Compressive stress_sa	afety (S _s):			
	S _s =	$IF(\Phi_v * P_n > Pu; "Safe"; "Unsafe")$	=	Safe	
	Stress_ratio=	$P_u/(\Phi_v * P_n)$	=	0.91	
Design Summary					
	Ultimate load, P _u =	1.2*P _D +1.6*P _L	=	840 kips	
	Design load, $\Phi_v P_n$ =	$\Phi_v * P_n$	=	928 kips	
	Stress_ratio=	$P_u/(\Phi_v * P_n)$	=	0.91	
	S _s =	IF(Φ _v *P _n >Pu;"Safe";"Unsafe")	=	Safe	

Chapter 3: Steel Design WT-Shapes in Axial Compression

*			
Braced Y-dir and Torsionally only	Lin		
Materials			1000
Grade:	SEL("Material/ASTM";NAME;)	=	A992
F _y =	TAB("Material/ASTM";F _y ;NAME=Grade)	=	50 ksi
E= G=			29000 ksi 1200 ksi
		I	1200 131
Buckling Lengths			00 00 f t
kL _{in} =			20.00 ft
			00.00.0
kL _{out} =			20.00 ft
kL _{out} = k _z L=	braced lengths for the strong- and weak- axes, respe	ctively; k _z L	20.00 ft
kL _{out} = k _z L= (kL _{in} and kL _{out} are unb unbraced length)	braced lengths for the strong- and weak- axes, respe	ctively; k _z L	20.00 ft
kL _{out} = k _z L= (kL _{in} and kL _{out} are unb unbraced length)	braced lengths for the strong- and weak- axes, respe	ctively; k _z L	20.00 ft
kL _{out} = k _z L= (<i>kL_{in} and kL_{out} are unk unbraced length</i>) Axial Loads	braced lengths for the strong- and weak- axes, respe	ctively; k _z L	20.00 ft is the torsion
kL _{out} = k _z L= (<i>kL_{in} and kL_{out} are unb</i> <i>unbraced length</i>) Axial Loads Axial dead load, P _D = Axial Live load, P _L =	braced lengths for the strong- and weak- axes, respen SCE/SEI 7, the required compressive strength is:	ctively; k _z L	20.00 ft <i>is the torsion</i> 6 kips
kL _{out} = k _z L= (<i>kL_{in} and kL_{out} are unk unbraced length</i>) Axial Loads Axial dead load, P _D = Axial Live load, P _L =		ctively; k _z L =	20.00 ft <i>is the torsion</i> 6 kips
kL _{out} = k _z L= (<i>kL_{in} and kL_{out} are unl unbraced length</i>) Axial Loads Axial dead load, P _D = Axial Live load, P _L = From Chapter 2 of AS Ultimate load, P _u =	CE/SEI 7, the required compressive strength is:		20.00 ft <i>is the torsion</i> 6 kips 18 kips
kL _{out} = k _z L= (<i>kL_{in} and kL_{out} are unk</i> <i>unbraced length</i>) Axial Loads Axial dead load, P _D = Axial Live load, P _L = From Chapter 2 of AS Ultimate load, P _u =	CE/SEI 7, the required compressive strength is:		20.00 ft <i>is the torsion</i> 6 kips 18 kips
kL _{out} = k _z L= (kL _{in} and kL _{out} are unk unbraced length) Axial Loads Axial dead load, P _D = Axial Live load, P _L = From Chapter 2 of AS Ultimate load, P _u = Section Details	SCE/SEI 7, the required compressive strength is: 1.2*P _D +1.6*P _L	=	20.00 ft <i>is the torsion</i> 6 kips 18 kips 36.0 kips
kL _{out} = k _z L= (<i>kL_{in} and kL_{out} are unl unbraced length</i>) Axial Loads Axial dead load, P _D = Axial Live load, P _L = From Chapter 2 of AS Ultimate load, P _u = Section Details sec.:	SCE/SEI 7, the required compressive strength is: 1.2*P _D +1.6*P _L SEL("AISC/WT"; NAME;)	=	20.00 ft <i>is the torsion</i> 6 kips 18 kips 36.0 kips WT7X15
kL _{out} = k _z L= (<i>kL_{in} and kL_{out} are unl unbraced length</i>) Axial Loads Axial dead load, P _D = Axial Live load, P _L = From Chapter 2 of AS Ultimate load, P _u = Section Details sec.: Depth, d=	CE/SEI 7, the required compressive strength is: 1.2*P _D +1.6*P _L SEL("AISC/WT"; NAME;) TAB("AISC/WT";d;NAME=sec.)	= = =	20.00 ft <i>is the torsion</i> 6 kips 18 kips 36.0 kips WT7X15 6.92 in
$kL_{out} = k_zL = (kL_{in} and kL_{out} are unlined unbraced length)$ Axial Loads Axial dead load, P _D = Axial Live load, P _L = From Chapter 2 of AS Ultimate load, P _u = Section Details sec.: Depth, d= Stem thickness, t _w =	SCE/SEI 7, the required compressive strength is: 1.2*P _D +1.6*P _L SEL("AISC/WT"; NAME;) TAB("AISC/WT";d;NAME=sec.) TAB("AISC/WT";t _w ;NAME=sec.) TAB("AISC/WT";b _f ;NAME=sec.)	= = = =	20.00 ft <i>is the torsion</i> 6 kips 18 kips 36.0 kips WT7X15 6.92 in 0.270 in

WT-Shapes in Axial Compression

I _x =	TAB("AISC/WT";I _x ;NAME=sec.)	=	19 in ⁴
I _y =	TAB("AISC/WT";I _y ;NAME=sec.)	=	10 in ⁴
(I _x and I _y ar	e the moment of inertia about x-and y-axes, respectively)		
r _x =	TAB("AISC/WT";r _x ;NAME=sec.)	=	2.07 in
r _y =	TAB("AISC/WT";r _y ;NAME=sec.)	=	1.49 in
(r _x and r _y a	e the radius of gyration about x- and y-axis, respectively)		
Torsion cor	stant, J= TAB("AISC/WT";J;NAME=sec.)	=	0.19 in ⁴
Q _s =	TAB("AISC/WT";Q _s ;NAME=sec.)	=	0.61
y=	TAB("AISC/WT";y;NAME=sec.)	=	1.58 in
(Q _s is a red	uction factor for unstiffned elements and y is the distance to	the N.A.)	
Element Classifica	tion		
(1) Flanges			
$b_f/2t_f, \lambda_f=$	$b_f/(2^*t_f)$	=	8.74
Determine	he flange limiting slenderness ratio, λrf , from AISC Specification	ation Table B	4.1a case 2:
$\lambda_{rf} =$	0.56*√(E/F _y)	=	13.5
FI_Class=	IF(λ _f ≤λ _{rf} ;"Non-Compact";"Slender")	=	Non-Compact
(2) Web:			
d/tw, λ_w =	d/t _w	=	25.6
Determine	he slender web limit from AISC Specification Table B4.1a ca	ase 4:	
			10.00
$\lambda_{rw} =$	0.75*√(E/F _y)	=	18.06
λ _{rw} = Web_Class	,	=	Slender

Slenderness check:

For members designed on the basis of compression, the slenderness ratio KL/r preferably should not exceed 200.

$\lambda_{x} =$	$\frac{kL_{in}}{r_{x}}$ *12	=	115.9
λ _y =	$\frac{kL_{out}}{r_{y}}$ *12	=	161.1
λ _{max} =	$MAX(\lambda_x;\lambda_y)$	=	161.1

Chapter 3: Steel Design WT-Shapes in Axial Compression

X-X Axis Critical Elastic Flexural Buckling Stress:						
	2					
F _{ex} =	$\frac{\pi^2 * E}{\lambda_x^2} =$	21.3 ksi				
Critics	al Elastic Torsional and Flexural-Torsional Buckling Stress:					
Childa	-					
F _{ey} =	$\frac{\pi^2 * E}{\lambda_y^2} =$	11.0 ksi				
Torsional Pa						
The s	hear center for a T-shaped section is located on the axis of symmetry at the mid	-depth of the flange.				
x _o =		0.0 in				
y _o =	y-t _f /2 =	1.39 in				
	ding to the AISC Specification Eqn. E4-11:					
A						
r _o =	$\sqrt{(x_0^2 + y_0^2 + \frac{I_x + I_y}{A})} =$	2.92 in				
Accor	ding to the AISC Specification Eqn. E4-10:					
H=	$1 - \frac{x_0^2 + y_0^2}{r_0^2} =$	0.77 in				
	ding to the AISC Specification Eqn. E4-9:					
F _{ez} = ($\frac{\pi^{2} * E * C_{w}}{(k_{z} * L)^{2}} + GJ \frac{1}{A * r_{o}^{2}}$					
Omit	term with C _w per User Note at end of AISC Specification Section E4.					
F _{ez} =	$\frac{G*J}{A*r_0^2} =$	56.72 ksi				
Accor	ding to the AISC Specification Eqn. E4-5:					
F _{e2} =	$\frac{F_{ey} + F_{ez}}{2 * H} * (1 - \sqrt{1 - \frac{4 * F_{ey} * F_{ez} * H}{(F_{ey} + F_{ez})^2}}) =$	10.5 ksi				
Governed Critical Elastic Buckling Stress						
F _e =	$MIN (F_{ex}; F_{ey}; F_{e2}) =$	10.5 ksi				

WT-Shapes in Axial Compression

AISC Page: 123

Buckli	ing Stress for The Sect	ion				
	Determine whether AISC Specification Equation E7-2 or E7-3 applies.					
	F _{er} =	0.44*Q*F _y	=	13.4 ksi		
	F _{cr} =	$IF(F_{e} \geq F_{er}; Q^{*}0.658^{(F_{y}^{*}Q/F_{e})}*F_{y}; 0.877^{*}F_{e})$	=	9.2 ksi		
Nomir	al Compressive Streng	yth				
	P _n =	F _{cr} *A	=	40.5 kips		
	Φ_{v} =			0.90		
	$\Phi_v P_n =$	$\Phi_v * P_n$	=	36.5 kips		
	Compressive stress sa	fety (S _s):				
	S _s =	$IF(\Phi_v * P_n > Pu; "Safe"; "Unsafe")$	=	Safe		
	Stress_ratio=	$\frac{P_{u}}{\Phi_{v} * P_{n}}$	=	0.99		
Desig	n Summary					
	Ultimate load, P _u =	1.2*P _D +1.6*P _L	=	36.0 kips		
	Design load, $\Phi_v P_n$ =	$\Phi_v * P_n$	=	36.5 kips		
	Stress_ratio=	$\frac{P_{u}}{\Phi_{v} * P_{n}}$	=	0.99		
	S _s =	$IF(\Phi_v * P_n > P_u; "Safe"; "Unsafe")$	=	Safe		

Braced Y-dir and Torsionally only			
Grade:	SEL("Material/ASTM";NAME;)	=	A992
F _v =	TAB("Material/ASTM";F _v ;NAME=Grade)	=	50 ksi
E=	, y	2	.9000 ksi
G=		1	1200 ksi
uckling Lengths			
kL _{in} =			30.00 ft
kL _{out} =			15.00 ft
k _z L=			15.00 ft
(kL _{in} and kL _{out} are	e unbraced lengths for the strong- and weak- axes, resp	ectively; k _z L	is the torsional
unbraced length)			
xial Loads			
Dead load, P _D =			140 kips
Live load, P _L =			200 kips
	f ASCE/SEI 7, the required compressive strength is:		
From Chapter 2 o		=	488 kips
From Chapter 2 o Ultimate load, P _u =	=1.2*P _D +1.6*P _L		
Ultimate load, P _u =	=1.2*P _D +1.6*P _L		
	=1.2*P _D +1.6*P _L		15.0 in
Ultimate load, P _u = ection Details	=1.2*P _D +1.6*P _L		15.0 in 0.25 in
Ultimate load, P _u = ection Details Web height, h=	=1.2*P _D +1.6*P _L		

Chapter 3: Steel Design Built-Up W-Shapes with Slender Elements

AISC Page: 125

	Built-Up Section Properties (ignoring fillet welds):					
	Area, A=	h*t _w +2*b _f *t _f	=	19.75 in ²		
	I _x =	$2^{*}(b_{f}^{*}t_{f})^{*}(t_{f}/2+h/2)^{2} + \frac{t_{w}^{*}h^{3}}{12} + \frac{b_{f}^{*}(t_{f})^{3}*2}{12}$	=	1096 in ⁴		
	l _y =	$\frac{2*b_{f}^{3}*t_{f}}{12} + \frac{h*t_{w}^{3}}{12}$	=	85.35 in ⁴		
	r _x =	$\sqrt{\frac{l_{x}}{A}}$	=	7.45 in		
	r _y =	$\sqrt{\frac{I_y}{A}}$	=	2.08 in		
Slend	erness Check					
	For members designed exceed 200.	d on the basis of compression, the slenderness ratio <i>KL</i> /	r pref	erably should not		
	λ _x =	$\frac{kL_{in}}{r_{x}}$ *12	=	48.3		
	λ _y =	$\frac{kL_{out}}{r_y}$ *12	=	86.5		
	Then, the governed sle	enderness (λ _{max}):				
	λ _{max} =	$MAX(\lambda_{X};\lambda_{y})$	=	86.5		
Elasti	c Flexural Buckling Str	ess				
	The available critical st As follows:	resses may be interpolated from AISC Manual Table 4-2	22 or	calculated directly		
	F _{e1} =	$\frac{\pi^2 * E}{2}$ λ_{max}	=	38.3 ksi		
Elastic Critical Torsional Buckling Stress						
	From the User Note in	AISC Specification Section E4,				
	h _o =	h+t _f	=	16 in		
	C _w =	$\frac{l_y * h_o^2}{4}$	=	5462 in ⁶		
	From AISC Design Gu	3 3				
	J=	$\frac{2*b_f*t_f^3+h*t_w^3}{3}$	=	5.41 in ⁴		

Built-Up W-Shapes with Slender Elements

		cification (Eqn. E4-4), $\pi^2 * E * C_w = 1$		
F _{e2} =		$\left(\frac{\pi^{2} * E * C_{w}}{(kzL * 12)^{2}} + G^{*}J\right)^{*}\frac{1}{l_{x} + l_{y}}$	=	92.1 ksi
Elastic Gove	erned Stress			
F _e =		MIN(F _{e1} ; F _{e2})	=	38.3 ksi
Element Cla	ssification			
(1) F	langes: Check for	slender flanges using AISC Specification Table B4.1a, t	hen c	letermine Q _s , the
		ange) reduction factor using AISC Specification Section	E7.1.	
	ulate kc using AISC	C Specification Table B4.1b note [a].		
k _c =		MIN(MAX(4/√(h/t _w);0.35);0.76)	=	0.52
b _f /2t	_f , λ _f =	b _f /(2*t _f)	=	4.00
Dete	rmine the flange li	miting slenderness ratio, λrf , from AISC Specification Ta	ible B	34.1a case 2
λ _{rf} =		$0.64*\sqrt{(k_c*E/F_y)}$	=	11.11
FI_C	lass=	IF(λ _f ≤λ _{rf} ;"Non-Compact";"Slender")	=	Non-Compact
Calc	ulate Qs, according	g to the AISC Specification Eqns. E7-4, E7-5 and E7-6		
λ _{rf1} =		1.17*√(k _c *E/F _y)	=	20.32
Q _{s1} =	:	$0.9*E*k_c/(F_y*\lambda_f^2)$	=	16.97
Q _{s2} =	:	1.415- 0.65*λ _f *√(F _y /(E*k _c))	=	1.27
Qs=		$IF(\lambda_{f}\!\!\leq\!\!\lambda_{rf}\!;1;IF(\lambda_{f}\!\!>\!\!\lambda_{rf1};Q_{s1}\!;Q_{s2}))$	=	1.00
	: Check for a slend cification, Section E	der web, then determine Qa, the stiffened element (web) E7.2.) redı	uction factor using AISC
h/t _w ,	$\lambda_w =$	h/t _w	=	60.00
Dete	rmine the slender	web limit from AISC Specification Table B4.1a case 5		
λ _{rw} =		1.49*√(E/F _y)	=	35.88
Web	_Class=	$IF(\lambda_w \leq \lambda_{rw}; "Non-compact"; "Slender")$	=	Slender
Q _a =	$\frac{A_e}{A_g}$			
whe	re A₂ is the effectiv	e area based on the reduced effective width (be). For Als	SC Sf	pecification Equation
		P_{cr} calculated based on $Q = 1.0$. Select between AISC	Spec	ification Equations E7-2
and	E7-3 based on KL/	—		
$\lambda_1 =$		4.71 * $\sqrt{\frac{E}{F_y}}$	=	113

Chapter 3: Steel Design Built-Up W-Shapes with Slender Elements

AISC Page: 127

	Calculate the flexural buckling stress, <i>Fcr:</i>				
	F _{cr1} =	IF(λ _{max} ≤λ ₁ ; 0.658 ^(F_y ′ F_e) ∗F _y ;0.877*F _e)	=	29.0 ksi	
	b _e =	MIN(1.92*t _w * $\sqrt{\frac{E}{F_{cr1}}}$ *(1- $\frac{0.34}{\lambda_w}$ * $\sqrt{\frac{E}{F_{cr1}}}$); h)	=	12.5 in	
	(Note that b _e should be	e less than the web height)			
	A _e =	b _e *t _w +2*b _f *t _f	=	19.1 in ²	
	Q _a =	A _e A	=	0.967	
	Q=	Q _s *Q _a	=	0.967	
Flexu	ral Buckling Strength				
	Determine another time	e whether AISC Specification Equation E7-2 or E7-3 app	lies.		
	$\lambda_2 =$	4.71*√(E/(Q*F _y))	=	115	
	F _{cr2} =	$IF(\lambda_{max} \leq \lambda_1; Q*0.658^{(F_y {}^*Q/F_e)} {}^*F_y; 0.877^*F_e)$	=	28.5 ksi	
Nomir	nal Compressive Streng	gth			
	P _n =	F _{cr2} *A	=	563 kips	
	Ф _v =			0.90	
	$\Phi_v P_n =$	$\Phi_v * P_n$	=	507 kips	
	Compressive stress sa	ifety (S _s):			
	S _s =	$IF(\Phi_v * P_n > P_u; "Safe"; "Unsafe")$	=	Safe	
	Stress_ratio=	$\frac{P_{u}}{\Phi_{v} * P_{n}}$	=	0.96	
Desig	n Summary				
	Ultimate load, P _u =	1.2*P _D +1.6*P _L	=	488 kips	
	$\Phi_v P_n$ =	$\Phi_v * P_n$	=	507 kips	
	Stress_ratio=	$\frac{P_{u}}{\Phi_{v} * P_{n}}$	=	0.96	
	S _s =	IF($\Phi_v * P_n > P_u;$ "Safe";"Unsafe")	=	Safe	

W-Shapes Subjected to Compression and Bending

A992

50 ksi

1.00

Design of W-Shapes Subjected to Compression Force and Bending Moment My Mx (Ρ **Materials** Grade: SEL("Material/ASTM"; NAME;) TAB("Material/ASTM";F_v;NAME=Grade) Fy= = E= 29000 ksi

Beam Length and Cb

Unsupported length, L _b =	14.00 ft
kL _{in} =	14.00 ft
kL _{out} =	14.00 ft

(kL_in and kL_out are strong- and weak/torsional- axes unbraced length, respectively)

From Table 3-1 (AISC), C_b=

Ultimate Compression Force and Bending Moments

(obtained from a second-order analysis that includes P- δ effects)

P _u =	200.0 kips
M _{ux} =	50.0 kip*ft
M _{uy} =	50.0 kip*ft

AISC Page: 129

Sectio	Section Details						
	sec.:		SEL("AISC/W";NAME;)	=	W14X68		
	depth, d=		TAB("AISC/W";d;NAME=sec.)	=	14.00 in		
	Web th., t _w =		TAB("AISC/W";t _w ;NAME=sec.)	=	0.41 in		
	Flange width, b _f =		TAB("AISC/W";b _f ;NAME=sec.)	=	10.00 in		
	Flange th., t _f =		TAB("AISC/W";t _f ;NAME=sec.)	=	0.72 in		
	Gross Area, A=		TAB("AISC/W";A;NAME=sec.)	=	20.00 in ²		
	I _x =		TAB("AISC/W";I _x ;NAME=sec.)	=	722.00 in ⁴		
	l _y =		TAB("AISC/W";I _y ;NAME=sec.)	=	121.00 in ⁴		
	(I _x and I _y are the mom	ent of inertia abo	out x-and y-axes, respectively)				
	Plastic sec. modulus,	Z _x =	TAB("AISC/W";Z _x ;NAME=sec.)	=	115.00 in ³		
	Elastic sec. modulus,	S _x =	TAB("AISC/W";S _x ;NAME=sec.)	=	103.00 in ³		
	Plastic sec. modulus,	Z _y =	TAB("AISC/W";Z _y ;NAME=sec.)	=	36.90 in ³		
	Elastic sec. modulus,	S _y =	TAB("AISC/W";S _y ;NAME=sec.)	=	24.20 in ³		
	Radius of gyration abo	out x-axis, r _x =	TAB("AISC/W";r _x ;NAME=sec.)	=	6.01 in		
	Radius of gyration abo	out y-axis, r _y =	TAB("AISC/W";r _y ;NAME=sec.)	=	2.46 in		
	Torsional constant, J=	:	TAB("AISC/W";J;NAME=sec.)	=	3.01 in ⁴		
	r _{ts} =		TAB("AISC/W";r _{ts} ;NAME=sec.)	=	2.80 in		
	h _o =		TAB("AISC/W";h _o ;NAME=sec.)	=	13.30 in		
	(r _{ts} is the Effective rad	lius of gyration fo	or the L.T.B. and h _o is distance betwe	en C.L. of	flanges)		
	AISC Specification Eq	n. (F2-1):					
	Yielding Moment in ma	P	Z _x *F _y *1/12	=	479 kip*ft		
	AISC Specification Eq	n. (F6-1):					
	Yielding Moment in mi	inor axis, M _{py} =	MIN (Z _y *F _y *1/12;1.6/12*S _y *F _y)	=	154 kip*ft		
Eleme	nt Classification						
	(1) Web:						
	h/tw, λ _w =	TAB("AISC/W	";h/t _w ;NAME=sec.)	=	27.50		
	According to AISC Sp	ecification Table	B4.1 Case 9, the limiting width-to-thi	ckness rat	tio for the web is:		
	Web_Class=	IF(λ _w ≤3.76∗√((E/F _y);"Compact"; "Non-Compact")	=	Compact		
	(2) Comp. flange:						
	$b_f/2t_f, \lambda_f=$	TAB("AISC/W	";b _f /2t _f ;NAME=sec.)	=	6.97		

.0

According to AISC Specification Table B4.1 Case 1, the limiting width-to-thickness ratios for the compression flange are:

$$\lambda_{pf} = 0.38^* \sqrt{\frac{E}{F_y}} = 9$$

$$\lambda_{rf} = 1.00^* \sqrt{\frac{E}{F_y}} = 24$$

 $\mathsf{IF}(\lambda_{\mathsf{f}} \leq \lambda_{\mathsf{pf}}; "\mathsf{Compact}"; \mathsf{IF}(\lambda_{\mathsf{f}} > \lambda_{\mathsf{rf}}; "\mathsf{Slender}"; "\mathsf{Non-Compact}"))$ FI_Class= Compact = The available strength provided by AISC Specification Sections F3.1, F3.2, F6.1 and F6.2, the nominal flexural moments in strong/weak axes are calculated as follows, satisfying the condition of compression Flange Local Buckling:

$$M_{px1}$$
 = M_{px} -0.7* F_{y} * S_{x} *1/12 = 179 kip*ft

$$M_{nx1} = IF(FI_Class="Compact"; M_{px}; (M_{px}-(M_{px1})^*(\frac{\lambda_f - \lambda_{pf}}{\lambda_{rf} - \lambda_{pf}}))) = 479 \text{ kip*ft}$$

$$M_{py1}$$
 = $M_{py}-0.7*F_y*S_y*1/12$ = 83 kip*ft

$$M_{ny1} = IF(FI_Class="Compact"; M_{py}; (M_{py}-(M_{py1})^*(\frac{\lambda_f - \lambda_{pf}}{\lambda_{rf} - \lambda_{pf}}))) = 154 \text{ kip*ft}$$

Slenderness Check: (According to Section E2)

For members designed on the basis of compression, the slenderness ratio KL/r preferably should not exceed 200.

$$\lambda_{x} = \frac{kL_{in}}{r_{x}} * 12 = 28.0$$

$$\lambda_{y} = \frac{kL_{out}}{r} * 12 = 68.3$$

Then, the governed slenderness (λ_{max}):

r_v

$$\lambda_{max}$$
 = MAX $(\lambda_x; \lambda_y)$ = 68.3

Critical Stresses

The available critical stresses may be interpolated from AISC Manual Table 4-22 or calculated directly as follows:

-Calculate the elastic critical buckling stress, Fe:

$$F_{e} = \frac{\pi^{2} * E}{\lambda_{max}} = 61.4 \text{ ksi}$$

W-Shapes Subjected to Compression and Bending

-Calculate the flexural buckling stress, F _{cr} (Eqns. E3-2 and E3-3):					
$\lambda_1 =$	$4.71*\sqrt{\frac{E}{F_y}}$	=	113		
F _{cr} =	$IF(\lambda_{max} \le \lambda_1; 0.658^{(Fy/Fe)} * F_y; 0.877*F_e)$	=	35.6 ksi		
Design Compress	ive Strength				
(Eqn. E3-1)					
P _n =	F _{cr} *A	=	712.0 kips		
Φ_{c} =			0.90		
$\Phi_{c}P_{n}=$	$\Phi_{c}^{*}P_{n}$	=	640.8 kips		
Lateral Torsional I	Buckling (LTB)				
The limiting	lengths Lp and Lr are determined according to the AISC Spec.	Eqns. F2	2-5 and F2-6, as follows:		
L _p =	$1.76 * r_y * \sqrt{\frac{E}{F_y}} / 12$	=	8.69 ft		
L _{r1} =	$\sqrt{\frac{J*1.0}{S_x*h_o}}$	=	0.05		
L _{r2} =	$\sqrt{1 + \sqrt{6.76 + \left(\frac{0.7 + F_y + S_x + h_o}{E + J + 1.0}\right)^2}}$	=	1.56		
L _r =	1.95/12*r _{ts} * <mark>E</mark> * L _{r1} *L _{r2}	=	29.41 ft		
Case=	IF(L _b >L _r ;"ELTB";IF(L _b ≤L _p ; "No LTB";"InLTB"))	=	InLTB		
("ELTB" ref	ers to elastic LTB. and "InLTB" refers to Inelastic LTB.)				
According t	o the AISC Spec. Eqn. F2-2:				
M ₁ =	$MIN(M_{px}; C_{b}^{*}(M_{px}\text{-}(M_{px}\text{-}0.7^{*}1/12^{*}F_{y}^{*}S_{x})^{*}(L_{b}\text{-}L_{p})/(L_{r}\text{-}L_{p})))$	=	433 kip*ft		
According t	o the AISC Spec. Eqn. F2-4:				
F _{cr} =	$C_{b}^{*}\pi^{2} \times \frac{E}{((L_{b}^{+}0.01) \times 12/r_{ts})^{2}}$	=	79.4 ksi		
F _{cr,mod} =	$\sqrt{1+0.078*J*\frac{1.0}{S_{x}*h_{o}}*\left(L_{b}*\frac{12}{r_{ts}}\right)^{2}}$	=	1.3 ksi		
According t	o the AISC Spec. Eqns. F2-3:				
M ₂ =	$MIN(M_{px};F_{cr}*S_{x}/12*F_{cr,mod})$	=	479 kip*ft		
	Later attender Destand Attender Otersternet Easter				

Chapter 3: Steel Design W-Shapes Subjected to Compression and Bending

According to the AISC Spec. Eqn. F2-2:						
	M _{nx2} =	IF (Case="No L.T.B.";M _{px} ;IF(Case="InLTB";M ₁ ;M ₂)) =	433 kip*ft		
Design	Flexure Moments in M	lajor/Minor Axes				
	Φ_{b} =			0.90		
	M _{nx} =	$MIN(M_{px};M_{nx1};M_{nx2})$	=	433 kip*ft		
	M _{ny} =	MIN(M _{py} ;M _{ny1})	=	154 kip*ft		
Calcula	ate the Available Flexu	al and Axial Strengths				
	F _{ca} =	$\frac{\Phi_{c} * P_{n}}{A}$	=	32.04 ksi		
	F _{bcx} =	$12^* \frac{\Phi_b * M_{nx}}{S_x}$	=	45.40 ksi		
	F _{bcy} =	$12^* \frac{\Phi_b * M_{ny}}{S_y}$	=	68.73 ksi		
Calcula	ate the Actual Flexural	and Axial Stresses				
	f _{ra} =	$\frac{P_u}{A}$	=	10.00 ksi		
	f _{rbx} =	$12*\frac{M_{ux}}{S_x}$	=	5.83 ksi		
	f _{rby} =	$12*\frac{M_{uy}}{S_y}$	=	24.79 ksi		
Check	the Combined Stress F	Ratio				
	(AISC Specification Sec	ction H2)				
	Stress_ratio=	$\frac{f_{ra}}{F_{ca}} + \frac{f_{rbx}}{F_{bcx}} + \frac{f_{rby}}{F_{bcy}}$	=	0.80		
	Safety=	IF(Stress_ratio≤1;"Safe";"Unsafe")	=	Safe		

W-Shapes Subjected to Compression and Bending

Design Summary

f _{ra} =	$\frac{P_{u}}{A}$	=	10.0 ksi
F _{ca} =	$\frac{\Phi_{c} * P_{n}}{A}$	=	32.0 ksi
f _{rbx} =	$12^{*}\frac{M_{ux}}{S_{x}}$	=	5.8 ksi
F _{bcx} =	$12^* \frac{\Phi_b * M_{nx}}{S_x}$	=	45.4 ksi
f _{rby} =	$12^* \frac{M_{uy}}{S_y}$	=	24.8 ksi
Fbcy=	$12^* \frac{\Phi_b * M_{ny}}{S_y}$	=	68.7 ksi
Stress_ratio=	$\frac{f_{ra}}{F_{ca}} + \frac{f_{rbx}}{F_{bcx}} + \frac{f_{rby}}{F_{bcy}}$	=	0.80
Safety=	IF(Stress_ratio≤1;"Safe";"Unsafe")	=	Safe

Chapter 3: Steel Design W-Shape Subjected to P and M including the Second Order Effect

Му			
Î P			
P	My Mx (
Iterials			
Grade:	SEL("Material/ASTM"; NAME;)	=	A992
F _y =	TAB("Material/ASTM";F _y ;NAME=Grade)	=	50 ksi
E=		2	29000 ksi
eam Length and C _b ((The member is not subjected to sidesway)		
Unsupported ler	ngth, L _b =		14.00 ft
Strong axis unb	raced length, kL _{in} =		14.00 ft
Weak axis and	torsional unbraced length, kL _{out} =		14.00 ft
From Table 3-1	(AISC), C _b =		1.14
ven Straining Action	s (Not including second-order effects)		
P _D =			5.0 kips
P _L =			15.0 kips
M _{xD} =			15.0 kip*ft
M _{xL} =			45.0 kip*ft
M _{yD} =			2.0 kip*ft
M _{yL} =			6.0 kip*ft
From Chapter 2	of ASCE/SEI 7, the required strength (not considering se	cond-order	effects) is:
P _u =	1.2*P _D +1.6*P _L	=	30.0 kips
M _{ux1} =	1.2*M _{xD} +1.6*M _{xL}	=	90.0 kip*ft
M _{uy1} =	1.2*M _{vD} +1.6*M _{vL}	=	12.0 kip*ft

W-Shape Subjected to P and M including the Second Order Effect

AISC Page: 135

sec.:	SEL("AISC/W";NAME;)	= \	W10X33
depth, d=	TAB("AISC/W";d;NAME=sec.)	=	9.73 in
Web th., t _w =	TAB("AISC/W";t _w ;NAME=sec.)	=	0.29 in
Flange width, b	= TAB("AISC/W";b _f ;NAME=sec.)	=	7.96 in
Flange th., t _f =	TAB("AISC/W";t _f ;NAME=sec.)	=	0.44 in
Gross Area, A=	TAB("AISC/W";A;NAME=sec.)	=	9.71 ir
I _x =	TAB("AISC/W";I _x ;NAME=sec.)	=	171.00 ir
I _v =	TAB("AISC/W";I _v ;NAME=sec.)	=	36.60 ir
(I _x and I _y are the	e moment of inertia about x-and y-axes, respective	ly)	
Plastic sec. mo	dulus, Z _x = TAB("AISC/W";Z _x ;NAME=sec.)	=	38.80 ir
Elastic sec. mo	dulus, S _x = TAB("AISC/W";S _x ;NAME=sec.)	=	35.00 ir
Plastic sec. mo	dulus, Z _y = TAB("AISC/W";Z _y ;NAME=sec.)	=	14.00 ir
Elastic sec. mo	dulus, S _y = TAB("AISC/W";S _y ;NAME=sec.)	=	9.20 ir
r _x =	TAB("AISC/W";r _x ;NAME=sec.)	=	4.19 ir
r _y =	TAB("AISC/W";r _y ;NAME=sec.)	=	1.94 ir
(r _x and r _y are th	e radius of gyration about x- and y- axis, respective	ely)	
Torsional const	ant, J= TAB("AISC/W";J;NAME=sec.)	=	0.58 ir
r _{ts} =	TAB("AISC/W";r _{ts} ;NAME=sec.)	=	2.20 ir
h _o =	TAB("AISC/W";h _o ;NAME=sec.)	=	9.30 ir
(r _{ts} is the Effect	ve radius of gyration for the L.T.B. and h _o is distan	ce between C.L. c	of flanges)
AISC Specificat	ion Eqn. (F2-1), yielding Moment in major axis (M _{p:}	x):	
M _{px} =	Z _x *F _y *1/12	=	162 kip*f
AISC Specificat	ion Eqn. (F6-1), yielding Moment in minor axis (M _p	y):	
M _{py} =	MIN (Z _v *F _v *1/12;1.6/12*S _v *F _v)	=	58 kip*1

W-Shape Subjected to P and M including the Second Order Effect

Required Flexural Strength (including second-order amplification) Use the approximate method of second-order analysis procedure from AISC Specification Appendix 8. Because the member is not subject to sidesway, only P- δ amplifiers need to be added. $B_1 = \frac{C_m}{1 - \alpha^* P_r / P_{e1}} \ge 1$ (Spec. Eq. A-8-3) The x-x axis flexural magnifier is, 1.00 C_{mx}= $\frac{\pi^2 * E * I_x}{\left(kL_{in} * 12\right)^2}$ P_{e1}= 1734 kips 1.00 α= $\frac{C_{mx}}{1 - \alpha^* P_u / P_{e1}}$ $B_{1x}=$ 1.02 = 91.8 kip*ft M_{ux}= $B_{1x}^* M_{ux1}$ = The Y-Y axis flexural magnifier is, $\frac{\frac{1}{\pi^2} * E * I_y}{\left(kL_{out} * 12\right)^2}$ P_{e2}= 371.2 kips = 1.00 C_{mv}= $\frac{C_{my}}{1 - \alpha^* P_{\mu} / P_{e2}}$ $B_{1v}=$ = 1.09 M_{uv}= $B_{1v}^* M_{uv1}$ = 13.1 kip*ft **Element Classification** (1) Web: TAB("AISC/W";h/t_w;NAME=sec.) = 27.10 $h/t_w, \lambda_w =$ According to AISC Specification Table B4.1 Case 9, the limiting width-to-thickness ratio for the web is: Web_Class= IF($\lambda_w \leq 3.76 * \sqrt{(E/F_v)}$;"Compact"; "Non-Compact") = Compact (2) Comp. flange: $b_f/2t_f, \lambda_f =$ TAB("AISC/W";b_f/2t_f;NAME=sec.) = 9.15 According to AISC Specification Table B4.1 Case 1, the limiting width-to-thickness ratios for the compression flange are: 0.38*√(E/F_v) 9 = $\lambda_{pf} =$ 1.00*√(E/F_v) 24 $\lambda_{rf} =$ = $\mathsf{IF}(\lambda_{f} \leq \lambda_{nf}; "Compact"; \mathsf{IF}(\lambda_{f} > \lambda_{rf}; "Slender"; "Non-Compact"))$ FI_Class= Non-Compact =

The available strength provided by AISC Specification Sections F3.1, F3.2, F6.1 and F6.2, the nominal flexural moments in strong/weak axes are calculated as follows, satisfying the condition of compression Flange Local Buckling:

$$\begin{split} M_{nx1a} &= & M_{px} - 0.7^* F_y^* S_x^* 1/12 &= & 60 \text{ kip}^* \text{ft} \\ M_{nx1} &= & IF(FI_Class="Compact"; M_{px}; (M_{px} - M_{nx1a}^* (\frac{\lambda_f - \lambda_{pf}}{\lambda_{rf} - \lambda_{pf}}))) &= & 161 \text{ kip}^* \text{ft} \\ M_{ny1a} &= & M_{py} - 0.7^* F_y^* S_y^* 1/12 &= & 31 \text{ kip}^* \text{ft} \\ M_{ny1} &= & IF(FI_Class="Compact"; M_{py}; (M_{py} - M_{ny1a}^* (\frac{\lambda_f - \lambda_{pf}}{\lambda_{rf} - \lambda_{pf}}))) &= & 58 \text{ kip}^* \text{ft} \end{split}$$

Slenderness Check (According to section E2)

For members designed on the basis of compression, the slenderness ratio KL/r preferably should not exceed 200.

$\lambda_{x} =$	$\frac{\kappa L_{in}}{r_{x}}$ *12	=	40.1
λ _y =	$\frac{kL_{out}}{r_{y}}$ *12	=	86.6
Then, the gove	erned slenderness (λ_{max}):		

$$\lambda_{max}$$
 = MAX $(\lambda_x; \lambda_y)$ = 86.6

Critical Stresses

The available critical stresses may be interpolated from AISC Manual Table 4-22 or calculated directly as follows:

-Calculate the elastic critical buckling stress, Fe:

1.1

$$F_{e} = \frac{\pi^{2} * E}{\lambda_{max}} = 38.2 \text{ ksi}$$

-Calculate the flexural buckling stress, F_{cr} (Eqns. E3-2 and E3-3):

$$\lambda_1 = 4.71*\sqrt{(E/F_y)} = 113$$

$$F_{cr}$$
= IF($\lambda_{max} \le \lambda_1$; (0.658) $\left(\frac{F_y}{F_e}\right)_* F_y$; 0.877* F_e) = 28.9 ksi

AISC Page: 138

Chapter 3: Steel Design W-Shape Subjected to P and M including the Second Order Effect

Design Compressive Strength (Eqn. E3-1)						
P _n =	F _{cr} *A	=	281 kips			
Φ_{c} =			0.90			
$\Phi_{c}P_{n}$ =	$\Phi_{c}^{*}P_{n}$	=	253 kips			
Lateral Torsion	al Buckling (LTB)					
The limit	ing lengths Lp and Lr are determined according to the AISC Spec.	Eqns. F2	-5 and F2-6, as follows:			
L _p =	1.76*r _y *√(E/F _y)/12	=	6.85 ft			
L _{r1} =	$\sqrt{\frac{J*1.0}{S_x*h_o}}$	=	0.04			
L _{r2} =	$\sqrt{1 + \sqrt{6.76 + \left(\frac{0.7 + F_y + S_x + h_o}{E + J + 1.0}\right)^2}}$	=	1.66			
L _r =	1.95/12*r _{ts} * <mark>E</mark> *L _{r1} *L _{r2}	=	19.67 ft			
Case=	IF(L _b >L _r ;"ELTB";IF(L _b ≤L _p ; "No LTB";"InLTB"))	=	InLTB			
	refers to elastic LTB and "InLTB" refers to inelastic LTB) g to the AISC Spec. Eqn. F2-2:					
M _{1a} =	M _{px} -0.7*1/12*F _v *S _x	=	59.9 kip*ft			
M ₁ =	MIN(M _{px} ; C _b *(M _{px} - M _{1a} *(L _b -L _p)/(L _r -L _p)))	=	147 kip*ft			
Accordir	g to the AISC Spec. Eqn. F2-4:					
F _{cr} =	$C_b^* \pi^{2*} E/((L_b^+ 0.01)^* 12/r_{ts})^2$	=	55.87 ksi			
F _{cr.mod} =	$\sqrt{(1+0.078*J*1.0/(S_x*h_o)*(L_b*12/r_{ts})^2)}$	=	1.35			
Accordin	g to the AISC Spec. Eqns. F2-3:					
M ₂ =	MIN(M _{px} ;F _{cr} *S _x /12*F _{cr,mod})	=	162 kip*ft			
Accordir	g to the AISC Spec. Eqn. F2-2:					
M _{nx2} =	IF (Case="No LTB";M _{px} ;IF(Case="InLTB";M ₁ ;M ₂))	=	147.0 kip*ft			
Design Flexure	Moment in Major/Minor Axes					
Φ_{b} =			0.90			
M _{nx} =	MIN(M _{px} ;M _{nx1} ;M _{nx2})	=	147.0 kip*ft			
M _{ny} =	MIN(M _{py} ;M _{ny1})	=	58.0 kip*ft			

Chapter 3: Steel Design W-Shape Subjected to P and M including the Second Order Effect

AISC Page: 139

Calcul	Calculate The Available Flexural and Axial Strengths					
	P _c =	$\Phi_{c}^{*} P_{n}$	=	252.90 kips		
	M _{cx} =	$\Phi_{b}^{*} M_{nx}$	=	132.3 kip*ft		
	M _{cy} =	$\Phi_{b}^{*} M_{ny}$	=	52.20 kip*ft		
Check	The Combined Stress	Ratio (AISC Specification Section H1-1a and H1-1b)				
	Axial ratio, p=	P _u P _c	=	0.12		
	Moments ratio, m=	$\frac{M_{ux}}{M_{cx}} + \frac{M_{uy}}{M_{cy}}$	=	0.94		
	Stress_ratio=	IF(p≥0.2; (p+8/9*m);(p/2+m))	=	1.00 in		
	Safety=	IF(Stress_ratio≤1;"Safe";"Unsafe")	=	Safe		
Desigr	n Summary					
	P _c =	$\Phi_{c^*} P_n$	=	252.9 kips		
	M _{cx} =	$\Phi_{b}^{*} M_{nx}$	=	132.3 kip*ft		
	M _{cy} =	$\Phi_{b}^{*} M_{ny}$	=	52.2 kip*ft		
	Stress_ratio=	IF(p≥0.2; (p+8/9*m);(p/2+m))	=	1.00		
	Safety=	IF(Stress_ratio≤1;"Safe";"Unsafe")	=	Safe		

HSS-Shape in Strong Axis Bending

Design of HSS-Shapes Subjected to Moment about Strong Axis $M_{\mathbf{X}}$ **Materials** Grade: SEL("Material/ASTM"; NAME;) A500 = TAB("Material/ASTM";F_v;NAME=Grade) Fy= 46 ksi = E= 29000 ksi Beam Length and C_b Total length, L= 50.00 ft **Design Moments and Uniform Live Load** Ultimate moment, M_u= 150.00 kip*ft Ultimate moment due to live load case, M_I = 80.00 kip*ft Ultimate Shear force, Q_u= 66 kips **Section Details** sec.: SEL("AISC/HSS";NAME;) HSS18X6X3/8 = depth, H_t= TAB("AISC/HSS";H_t;NAME=sec.) 18.00 in = HSS th., t_{des}= TAB("AISC/HSS";t_{des};NAME=sec.) 0.349 in = HSS width, b= 6.00 in TAB("AISC/HSS";B;NAME=sec.) = Plastic sec. modulus, Z_x= TAB("AISC/HSS";Z_x;NAME=sec.) 86.40 in³ = Elastic sec. modulus, S_x = TAB("AISC/HSS"; S_x ;NAME=sec.) = 66.90 in³ Inertia about x-axis, I_x= TAB("AISC/HSS";I_x;NAME=sec.) 602.00 in⁴ = Yielding Moment, $M_p = Z_x * F_v * 1/12$ = 331 kip*ft

Chapter 3: Steel Design HSS-Shape in Strong Axis Bending

Eleme	ent Classification			
	(1) Web:			
	h/t _{des} , λ_w =	TAB("AISC/HSS";h/t _{des} ;NAME=sec.)	=	48.70
	Determine the limiti 19.	ing ratio for a compact HSS web in flexure from AIS	C Specification	Table B4.1b Case
	λ _{wr} =	2.42∗√(E/F _y)	=	60.8
	Web_Class=	IF(λ _w ≤λ _{wr} ;"Compact"; "Non-Compact")	= C	ompact
	(2) Comp. flange:			
	b/t _{des} , λ_{f} =	TAB("AISC/HSS";b/t _{des} ;NAME=sec.)	=	14.20
	Determine the limiti 17.	ing ratio for a slender HSS flange in flexure from AIS	C Specificatior	1 Table B4.1b Case
	λ _{fr} =	1.12*√(E/F _y)	=	28.1
	FI_Class=	IF(λ _f ≤λ _{ff} ;"Compact";"Non-Compact")	=	Compact
	M _{n1a} =	M _p -F _y *S _x *1/12	=	74.55 kip*ft
	λ _{fa} =	$3.57^*\lambda_f^*\sqrt{\frac{F_y}{E}}-4$	=	-1.98
	M _{n1b} =	MIN(M_p ; M_p - M_{n1a} * λ_{fa})	=	331.0 kip*ft
	M _{n1} =	IF(FI_Class="Compact"; M _p ; M _{n1b})	=	331.0 kip*ft
	(Note that For HSS applies)	with noncompact flanges and compact webs, AISC	Specification S	Section F7.2(b)
Check	The Available Flex	ure Strength		
	ΦM_n =	0.90*MIN(M _p ;M _{n1})	=	298 kip*ft
	Safety=	IF(ΦM _n ≥M _u ;"Safe";"Unsafe")	=	Safe
	Moment raio=	M _u /ΦM _n	=	0.50
Check	Shear Strength			
oncor	From AISC Specific	cation Section G5, if the exact radius is unknown, h s minus three times the design thickness.	shall be taken a	as the corresponding
	h=	H _t -3*t _{des}	=	17 in
	λ _w =	TAB("AISC/HSS";h/t _{des} ;NAME=sec.)	=	48.70
	∕°₩	des, while -360.	-	10.10

HSS-Shape in Strong Axis Bending

For rectangular F Section G5) and	ISS in shear, use AISC Specification Section G2.1 with Aw = kv = 5.	= 2ht (p	er AISC Specification
k _v =			5
$\lambda_{w1} =$	$1.1*\sqrt{(k_v*E/F_y)}$	=	62
$\lambda_{w2} =$	1.37*√(k _v *E/F _y)	=	77
C _{va} =	$1.51*5*E/(F_y*\lambda_w^2)$	=	2.0
C _v =	$IF(\lambda_w \leq \lambda_{w1}; 1; IF((\lambda_w > \lambda_{w1} AND \ \lambda_w \leq \lambda_{w2}); \lambda_{w1} / \lambda_w; C_{va}))$	=	1
A _w =	2*h*t _{des}	=	12 in ²
Nominal shear st	rength (V _n):		
V _n = From AISC Spec	$0.6*F_y*A_w*C_v$ ification Section G1, the available shear strength is:	=	331.20 kips
Φ_v =			0.90
$\Phi_v V_n =$	$\Phi_v^* V_n$	=	298.08 kips
Shear_safety=	$IF(\Phi_v * V_n > Q_u; "Safe"; "Unsafe")$	=	Safe
Check Deflection			
Δ_{all} =	L/240	=	0.21 ft
W_{eq} (LL), W_{L} =	$\frac{8*M_{L}}{L^{2}}$	=	0.26 kip/ft
$\Delta_{act}=$	$12^{2} * \frac{5^{*}W_{L}*L^{4}}{384^{*}E^{*}Ix}$	=	0.175 ft
Deflection safety	, $D_s = IF(\Delta_{all} \ge \Delta_{act}; "Safe"; "Increase section")$	=	Safe
Design Summary			
ΦM_n =	0.90*MIN(M _p ;M _{n1})	=	298 kip*ft
Safety=	IF(ΦM _n ≥M _u ;"Safe";"Unsafe")	=	Safe
Moment raio=	$M_u/\Phi M_n$	=	0.50
$\Phi_v V_n$ =	$\Phi_{v}^{*}V_{n}$	=	298 kips
Shear_safety=	IF(Φ _v *V _n >Q _u ;"Safe";"Unsafe")	=	Safe
Δ_{act} =	$\frac{5*WL*L^{4}}{384*E*Ix}$	=	0.00 ft
Δ_{all} =	L/240	=	0.21 ft
Deflection safety	, $D_s = IF(\Delta_{all} \ge \Delta_{act}; "Safe"; "Increase section")$	=	Safe

W-Shape Subjected to Tension Force in a Bolted Connection

Design of W-Shapes Subjected to Tension Force in a Bolted Connection မှ **Materials** Grade: SEL("Material/ASTM"; NAME;) A992 = F_v= TAB("Material/ASTM";F_v;NAME=Grade) 50 ksi = TAB("Material/ASTM";F_u;NAME=Grade) F_u= 65 ksi = **Buckling Lengths** Member length, L= 25.00 ft **Axial Loads** Axial dead load, P_D= 30 kips Axial Live load, P_I = 90 kips From Chapter 2 of ASCE/SEI 7, the required compressive strength is: Ultimate load, P_u= 1.2*P_D+1.6*P_L 180 kips = **Section and Connection Details** sec.: SEL("AISC/W";NAME;) W12X106 depth, d_o= TAB("AISC/W";d;NAME=sec.) 12.90 in = Web th., t_w= TAB("AISC/W";t_w;NAME=sec.) 0.61 in = Flange width, b_f= TAB("AISC/W";b_f;NAME=sec.) = 12.20 in Flange th., t_f= TAB("AISC/W";t_f;NAME=sec.) 0.99 in = 31.20 in² Gross Area, A_a= TAB("AISC/W";A;NAME=sec.) = TAB("AISC/W";r_x;NAME=sec.) 5.47 in r_x= = TAB("AISC/W";r_v;NAME=sec.) 3.11 in r_v= = (r_x and r_y are the radius of gyration about x- and y- axis)

W-Shape Subjected to Tension Force in a Bolted Connection

AISC Page: 144

Rounded depth, d _{WT} =	TAB("AISC/W";d _{WT} ;NAME=sec.)	=	13.00 in
WT=	TAB("AISC/WT";NAME;d _{ro} =d _{WT} /2)	=	WT6X53
y =	TAB("AISC/WT"; y;NAME=WT)	=	1.190 in
Bolt_diameter:	SEL("AISC/Bolt";Size;)	=	d3/4
d _b =	TAB("AISC/Bolt";dia;Size=Bolt_diameter)	=	0.750 in
hole diameter, d _h =	d _b +1/16	=	0.813 in
Connection length, I =			9.00 in

Check Tensile Yielding

From AISC Manual Table 5-1, the tensile yielding strength is:

Φ_{t1} =			0.90
P _{n1} =	$\Phi_{t1} * F_{y} * A_{g}$	=	1404.0 kips
Yield_safety=	IF(P _u ≤ P _{n1} ;"Safe";"Unsafe")	=	Safe

Check Tensile Rupture

Calculate the shear lag factor, U, as the larger of the values from AISC specification section D3, Table D3.1 case 2 and case 7. From AISC Specification Section D3, for open cross sections, U need not be less than the ratio of the gross area of the connected element(s) to the member gross area.

$$U_1 = \frac{2^* b_f^* t_f}{A_g} = 0.774$$

Case 2: Check as two WT-shapes per AISC Specification Commentary Figure C-D3.1

U ₂ =	1 - <mark>y</mark> 1 - <mark>1</mark>		=	0.868
------------------	--	--	---	-------

Case 7:

 $U_3 =$ IF(b_f $\ge 2/3^*d_0; 0.90; 0.85)$ = 0.900 U = MAX(U₁;U₂;U₃) = 0.900

Effective Net Area

Calculate A_n using AISC Specification Section B4.3.

 $A_n = A_g - 4 * (d_h + 1/16) * t_f = 27.73 in^2$

Calculate $\rm A_e$ using AISC Specification Section D3

$$A_{e} = A_{n} * U = 24.96 \text{ in}^{2}$$

Chapter 3: Steel Design W-Shape Subjected to Tension Force in a Bolted Connection

AISC Page: 145

Available	e Tensile Rupture Stre	ength		
F	P ₂ =	F _u * A _e	=	1622.4 kips
Ģ	• _{t2} =			0.75
F	P _{n2} =	$P_2 * \Phi_{t2}$	=	1216.8 kips
F	Rupture_safety=	IF(P _u ≤ P _{n1} ;"Safe";"Unsafe")	=	Safe
Slenderr	ness Check (Accordin	g to section D1)		
F	For members designed	on the basis of compression, the slenderness ratio KL/r	shou	uld not exceed 300.
λ	λ _{max} =	L r _y *12	=	96.5
5	Slenderness_limit=	$IF(\lambda_{max} \leq 300; "Safe"; "Unsafe")$	=	Safe
Design S	Summary			
ι	Ultimate load, P _u =	1.2*P _D +1.6*P _L	=	180.0 kips
F	P _{n1} =	$\Phi_{t1} * F_y * A_g$	=	1404.0 kips
١	Yield_safety=	$IF(P_u \le P_{n1};"Safe";"Unsafe")$	=	Safe
F	P _{n2} =	$P_2 * \Phi_{t2}$	=	1216.8 kips
F	Rupture_safety=	$IF(P_u \le P_{n1};"Safe";"Unsafe")$	=	Safe
5	Slenderness_limit=	$IF(\lambda_{max} \le 300; "Safe"; "Unsafe")$	=	Safe
	Inte	ractive Design Aids for Structural Engineer	S	

g g			
aterials			
Grade:	SEL("Material/ASTM"; NAME;)	=	A992
F _y =	TAB("Material/ASTM";F _y ;NAME=Grade)	=	50 ksi
F _u =	TAB("Material/ASTM";F _u ;NAME=Grade)	=	65 ksi
uckling Length			
Member length, L=			30.00 ft
tial Loads			
Axial dead load, P _D =	-		40 kips
Axial Live load, P_L =			120 kips
From Chapter 2 of A	SCE/SEI 7, the required compressive strength is:		
Ultimate load, P _u =	1.2*P _D +1.6*P _L	=	240 kips
ection and Connection De	etails		
sec.:	SEL("AISC/WT";NAME;)	=	WT6X2
depth, d _o =	TAB("AISC/WT";d;NAME=sec.)	=	5.97 in
Web th., t _w =	TAB("AISC/WT";t _w ;NAME=sec.)	=	0.29 in
Flange width, b _f =	TAB("AISC/WT";b _f ;NAME=sec.)	=	8.01 in
Flange th., t _f =	TAB("AISC/WT";t _f ;NAME=sec.)	=	0.515 i
Gross Area, A _g =	TAB("AISC/WT";A;NAME=sec.)	=	5.84 in
r _x =	TAB("AISC/WT";r _x ;NAME=sec.)	=	1.57 in
r _y =	TAB("AISC/WT";r _y ;NAME=sec.)	=	1.94 in
$(r_x and r_y are the rac$	dius of gyration about x- and y- axis)		
Distance to centroid,	y = TAB("AISC/WT"; y;NAME=sec.)	=	1.09 in
Connection length, I	=		16.00 in

Chapter 3: Steel Design WT-Shape Subjected to Tension Force in Welded Connections

able 5-1, the tensile yielding strength is:	
	0.90
$\Phi_{t1} * F_y * A_g$	= 262.8 kips
IF(P _u ≤ P _{n1} ;"Safe";"Unsafe")	= Safe
ag factor, U, as the larger of the values from A	ISC Specification Section D3, Table
e 7. From AISC Specification Section D3, for o	open cross sections, U need not be lea
	member gross area.
$\frac{b_{f} t_{f}}{A_{q}}$	= 0.706
o WT-shapes per AISC Specification Comme	ntary Figure C-D3.1
$1 - \frac{y}{l}$	= 0.932
IF(b _f ≥2/3*d _o ; 0.90; 0.85)	= 0.900
MAX(U ₁ ;U ₂ ;U ₃)	= 0.932
ISC Specification Section B4.3.	
Ag	= 5.8 in^2
ISC Specification Section D3	
A _n * U	= 5.4 in ²
Strength	
F _u * A _e	= 351.0 kips
	0.75
$P_2 * \Phi_{t2}$	= 263.3 kips
IF(P _u ≤ P _{n1} ;"Safe";"Unsafe")	= Safe
	$IF(P_{u} \leq P_{n1};"Safe";"Unsafe")$ ag factor, U, as the larger of the values from A e 7. From AISC Specification Section D3, for compress area of the connected element(s) to the form $\frac{b_{f} * t_{f}}{A_{g}}$ o WT-shapes per AISC Specification Comment $1 - \frac{y}{1}$ $IF(b_{f} \geq 2/3*d_{o}; 0.90; 0.85)$ $MAX(U_{1};U_{2};U_{3})$ ISC Specification Section B4.3. A_{g} ISC Specification Section D3 $A_{n} * U$ Strength $F_{u} * A_{e}$ $P_{2} * \Phi_{t2}$

Slenderness Check (According to section D1)

For members designed on the basis of compression, the slenderness ratio KL/r should not exceed 300.

	r _{min} =	MIN(r _x ; r _y)	=	1.57 in
	λ _{max} =	L r _{min} *12	=	229.3
	Slenderness_limit=	IF($\lambda_{max} \leq 300$; "Safe"; "Unsafe")	=	Safe
Desig	n Summary			
	Ultimate load, P _u =	1.2*P _D +1.6*P _L	=	240.0 kips
	P _{n1} =	$\Phi_{t1} * F_y * A_g$	=	262.8 kips
	Yield_safety=	$IF(P_u \le P_{n1};"Safe";"Unsafe")$	=	Safe
	P _{n2} =	$P_2 * \Phi_{t2}$	=	263.3 kips
	Rupture_safety=	$IF(P_u \le P_{n1};"Safe";"Unsafe")$	=	Safe
	Slenderness_limit=	IF(λ _{max} ≤ 300; "Safe"; "Unsafe")	=	Safe

I	1		
д _			
erials			
Grade:	SEL("Material/ASTM"; NAME;)	= A3	
F _y =	TAB("Material/ASTM";F _y ;NAME=Grade)	= 36 k	
E=		29000 k	SI
ds			
	shear strength at the start of this panel from the end , V_{u} :		
V _u =		120 k	kips
tion Details			
Depth, d=		36 ii	n
Web thicknes	s, t _w =		3125 ir
	e between stiffeners, a=	99 ii	
Upper flange		12 i	
Upper flange f	hickness, t _{fc} =	1.5	50 in
Lower flange	width, b _{ft} =	12.0)0 in
Lower flange t	hickness, t _{ft} =	1.5	50 in
ar Strength for th	is Panel		
h=	d-t _{fc} -t _{ft}	= 33.0)0 in
ψ=	a/h	= 3.0	00
k _{v1} =	$5+(5/\psi^2)$	= 5.5	56
Based on AIS	C Specification Section G2.1, k _v =5 when a/h>3 or a/h>[260	/(h/tw)] ²	
λ _w =	h/tw	= 106	
Ψ ₁ =	$(260/\lambda_{w})^2$	= 6.0)2
Ψ1 Use k _v =	(200,7 _w) IF(ψ>3 AND ψ>ψ ₁ ;5;k _{γ1})	= 5.5	
			0
λ _{w1} =	1.10*√(k _v *E/F _y)	= 74	
$\lambda_{w2} =$	1.37*√(k _v *E/F _y)	= 92	

Interior Panel of Built-Up Girder with Transverse Stiffeners

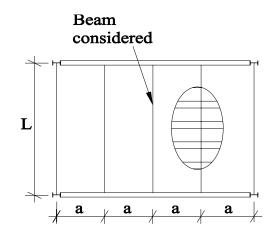
AISC Page: 150

Calculate C _v according to Eqns. G2-2, G2-3, G2-4 and G2-5:						
	C _{v1} =	w ²)))=	0.60			
	Check the additional limits from AISC Specification Section G3.1 for the use of tension			on field action:		
	A _w =	d*t _w	=	11.3 in ²		
	η=	$\frac{A_{w} * 2}{b_{fc} * t_{fc} + b_{ft} * t_{ft}}$	=	0.63		
	v _{fc} =	h b _{fc}	=	2.75		
	v _{ft} =	h b _{ft}	=	2.75		
	Check_TF=	IF(ψ >MIN(3; ψ_1) AND η >2.5 AND v_{fc} >6 AND v_{ft} >6;"1";"2")	=	2		
	Case=	IF(Check_TF="1";"NP";"P")	=	Р		
		and "NP": not permitted				
	Calculate C _v ai	nd V _n , according to Section G3-2a and b:				
	C _{v2} =	$IF(\lambda_{w} \leq \lambda_{w1}; 1; (C_{v1} + \frac{1 - C_{v1}}{1.15 * \sqrt{1 + \left(\frac{a}{h}\right)^{2}}}))$	=	0.71		
	Nominal shear					
	V _n =	IF(Case="PERMITTED";0.6*F _y *A _w *C _{v2} ;0.6*F _y *A _w *C _{v1})	=	146 kips		
	Φ_{v} =			0.90		
	$\Phi_v V_n$ =	$\Phi_v * V_n$	=	131 kips		
	Shear_safety=	IF(Φ _v *V _n >V _u ;"Safe";"Unsafe")	=	Safe		
	Force_ratio=	$Vu/\Phi_v V_n$	=	0.92		
Desigr	n Summary					
	V _u =			120 kips		
	$\Phi_v V_n$ =	$\Phi_v * V_n$	=	131 kips		
	Force_ratio=	$Vu/\Phi_v V_n$	=	0.92		
	Shear_safety=	IF(Φ _v *V _n >V _u ;"Safe";"Unsafe")	=	Safe		

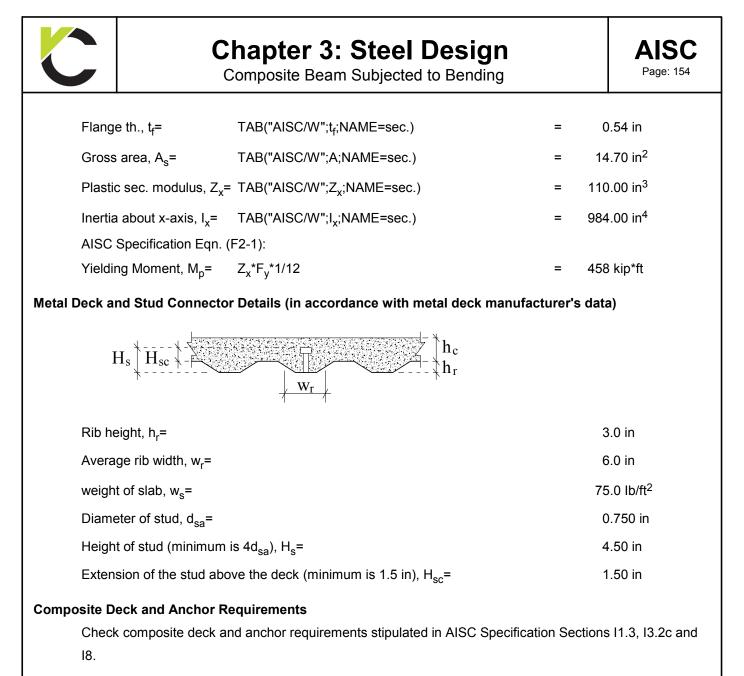
aterials			
Grade:	SEL("Material/ASTM"; NAME;)	=	A36
F _y = E=	TAB("Material/ASTM";F _y ;NAME=Grade)	=	36 ksi
		4	29000 ksi
pads	D -		151 0 king
Reaction at support,	rv−		154.0 kips
ction Details			00 ·
depth, d=			36 in
Web thickness, t _w = clear distance betwee	on stiffonors, or		0.3125 in 60.00 in
Upper flange width, b			12 in
Upper flange thickne			1.50 in
Lower flange width, b			12.00 in
			1.50 in
Lower flange thickne			1.00 III
ear Strength for End Par			
h=	d-t _{fc} -t _{ft}	=	33.00 in
ψ=	a/h	=	1.82
k _{v1} =	$5+(5/\psi^2)$	=	6.51
Based on AISC Spec	ification Section G2.1, kv=5 when a/h>3 or a/h>[26	0/(h/tw)] ²	
$\lambda_w =$	h/tw	=	106
ψ ₁ =	(260/λ _w) ²	=	6.02
Therefore, use k _v =	IF(ψ>3 AND ψ>ψ ₁ ;5;k _{v1})	=	6.51

Chapter 3: Steel Design

End Panel of Built-Up Girder with Transverse Stiffeners



	Tension field action is not allowed because the panel is an end panel.					
	λ _{w1} =	1.10*√(k _v *E/F _y)	=	80		
	$\lambda_{w2} =$	1.37*√(k _v *E/F _y)	=	99		
	Calculate C_v according to Equ	ns. G2-2, G2-3, G2-4 and G2-5:				
	$C_v = IF(\lambda_w \le \lambda_{w1}; 1; IF(\lambda_w > \lambda_{w1}; 1))$	_{w1} AND λ _w ≤λ _{w2} ;λ _{w1} /λ _w ;1.51*k _v *E/(F _y *λ _w ²)))	=	0.705		
	A _w =	d*t _w	=	11.3 in ²		
	Calculate Vn using Eqn. G2-1	1:				
	Nominal shear strength, V_n =	0.6*F _y *A _w *C _v	=	172 kips		
	Φ_{v} =			0.90		
	$\Phi_v V_n$ =	$\Phi_v * V_n$	=	155 kips		
	Shear_safety=	$IF(\Phi_v * V_n > R_v; "Safe"; "Unsafe")$	=	Safe		
	Force_ratio=	R_v/Φ_vV_n	=	0.99		
Design Summary						
	Reaction at support, R _v =			154.0 kips		
	$\Phi_v V_n =$	$\Phi_v^* V_n$	=	154.8 kips		
	Force_ratio=	Rv/Φ _v V _n	=	0.99		


Composite Beam Subjected to Bending

Design of Composite Beam Subjected to Bending about its Major Axis

Materials

	Grade:	SEL("Material/ASTM"; NAME;)	=	A992
	F _y =	TAB("Material/ASTM";F _y ;NAME=Grade)	=	50 ksi
	F _u =	TAB("Material/ASTM";F _u ;NAME=Grade)	=	65 ksi
	E _s =			29000 ksi
Beam	Length			
	Total length, L=			45.00 ft
	Beam spacing, a=			10.0 ft
Concr	ete Details			
	f' _c =			4.0 ksi
	Total thickness, t _s =			7.5 in
	concrete weight, γ_c =			145.0 lb/ft ³
Loads	i			
	Superimposed (HVAC, c	eiling, floor covering, etc.), w _{sd} =		10.0 lb/ft ²
	Live load for construction (temporary loads during concrete placement), w_{Lc} =			25.0 lb/ft ²
	Live load non-reducible,	w _{LL} =		100.0 lb/ft ²
Sectio	on Details			
	sec.:	SEL("AISC/W";NAME;)	=	W21X50
	Weight, w _{sec} =	TAB("AISC/W";W;NAME=sec.)	=	50.00 lb/ft
	depth, d=	TAB("AISC/W";d;NAME=sec.)	=	20.80 in
	Web th., t _w =	TAB("AISC/W";t _w ;NAME=sec.)	=	0.38 in
	Flange width, b _f =	TAB("AISC/W";b _f ;NAME=sec.)	=	6.53 in

- Conc_strength_check =	: IF(($f'_c \le 10 \text{ AND } f'_c \ge 3$); "o.k."; "change f'_c ")	=	o.k.
- h _r _check=	IF($h_r \le 3$; "o.k."; "decrease h_r ")	=	o.k.
- w _r _check=	IF($w_r \ge 2$; "o.k."; "increase w_r ")	=	o.k.
- d _{sa} _check=	IF(d _{sa} \leq 0.75; "o.k."; "decrease d _{sa} ")	=	o.k.
- t _f _check=	$\text{IF(tf} \geq \text{d}_{\text{sa}} / 2.5; \text{"o.k."}; \text{"decrease d}_{\text{sa}} \text{")}$	=	o.k.
-H _{sc} _check=	IF((H _s \ge (h _r +1.5) AND H _s < t _s -0.5); "o.k."; "unsafe")	=	o.k.
-H _s _check=	$IF(H_s \ge 4*d_{sa}; "o.k."; "increase H_s")$	=	o.k.
- h _c _check=	IF((t_s - h_r) \ge 2; "o.k."; "increase h_c ")	=	o.k.

Chapter 3: Steel Design

Composite Beam Subjected to Bending

Design	for	Pre-Composite	Condition
--------	-----	----------------------	-----------

- Construction Pre-composite Loads:					
w _{D1} =	0.001*(w _s *a+w _{sec})	=	0.80 kip/ft		
w _{L1} =	0.001*(w _{Lc} *a)	=	0.25 kip/ft		

- Construction Pre-composite flexural strength, from Chapter 2 of ASCE/SEI 7, the required flexural strength is:

w _{u1} =	1.2* w _{D1} + 1.6*w _{L1}	=	1.36 kip/ft
M _{u1} =	$\frac{w_{u1} * L^2}{8}$	=	344 kip*ft

Assume that attachment of the deck perpendicular to the beam provides adequate bracing to the compression flange during construction, thus the beam can develop its full plastic moment capacity. The design flexural strength is determined as follows, from AISC Specification Equation F2-1:

Φ_{b} =	0.90
--------------	------

M _{n1} =	$\Phi_{b} * M_{p}$	=	412 kip*ft
Flexural_safety1=	IF(M _{n1} ≥ M _{u1} ; "Safe"; "Unsafe")	=	Safe

L*12

360

- Pre-composite deflection:

Λ =	
∆ _{nc} =	

$(L^{*}D1)^{4}$		
384*E _s *I _x	=	2.59 in
* 12	=	1.50 in

 $\Delta_{\text{recom}}=$

If pre-composite deflection exceeds the recommended limit. One possible solution is to increase the member size. A second solution is to induce camber into the member. So, the user in this step has to determine a solution in case of exceeding the recommended limit.

		ise of exceeding the recommended limit.		
	Camber=			2.00 in
	deflection_check=	IF((Δ _{nc} - Camber)<Δ _{recom} ; "Safe"; "Unsafe")	=	Safe
Desigr	n for Composite Conditio	n		
	- Required Flexural Strer	ngth:		
	w _{D2} =	0.001*((w _s +w _{sd})*a+w _{sec})	=	0.90 kip/ft
	w _{L2} =	0.001*(w _{LL} *a)	=	1.00 kip/ft
	From Chapter 2 of ASCE	/SEI 7, the required flexural strength is:		
	w _{u2} =	1.2* w _{D2} + 1.6*w _{L2}	=	2.68 kip/ft
	M _{u2} =	$\frac{w_{u2}*L^2}{8}$	=	678 kip*ft

Composite Beam Subjected to Bending

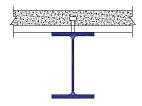
Determine The Effective Slab Width, be

The effective width of the concrete slab is the sum of the effective widths to each side of the beam centerline as determined by the minimum value of the three widths set forth in AISC Specification Section I3.1a:

b _{e1} =	L 8*2	=	11.25 ft
b _{e2} =	a 2*2	=	10.00 ft
b _e =	MIN(b _{e1} ; b _{e2})	=	10.00 ft

b_e=

Available Flexural Strength


According to AISC Specification Section I3.2a, the nominal flexural strength shall be determined from the plastic stress distribution on the composite section when h / tw $\leq \sqrt{(3.76 \text{ E} / \text{Fy})}$

$$\lambda_{w} = \frac{d}{t_{w}} = 54.74$$

Web_Class=

IF(λ_w ≤3.76*√(E_s/F_v);"Compact"; "Non-Compact") = Compact

According to AISC Specification Commentary Section I3.2a, the number and strength of steel headed stud anchors will govern the compressive force, C, for a partially composite beam. The composite percentage is based on the minimum of the limit states of concrete crushing and steel yielding as follows:

- Concrete crushing:

A_c= Area of concrete slab within effective width. Assume that the deck profile is 50% void and 50% concrete fill.

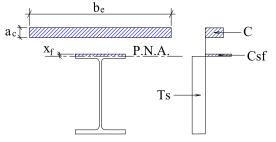
A _c =	$(b_e^* 12)^*(t_s - h_r) + 0.5 * (b_e^* 12^* h_r)$	=	720.00 in ²
C _c =	0.85* <i>f</i> ′ _c *A _c	=	2448 kips
- Steel yielding:			
C _s =	A _s *F _y	=	735 kips
- Shear transfer:			
60% is used as a trial p	ercentage of composite action as follows:		
C ₁ =Σ Q _n			
C ₁ =	0.6 * MIN(C _c ;C _s)	=	441 kips

Composite Beam Subjected to Bending

147 kips

0.60

o.k.


=

=

=

Location of The Plastic Neutral Axis

The plastic neutral axis (PNA) is located by determining the axis above and below which the sum of horizontal forces is equal. This concept assumes the trial PNA location is within the top flange of the beam.

P.N.A. inside flange

 $\Sigma F_{above PNA} = \Sigma F_{below PNA}$

$$C_{sf1} = x_{f1} * b_f * F_v$$

 $T_{s1} = (A_s - x_{f1} * b_f) * F_y$

x_{f1}=

C_{sf} =

$A_s * F_y - C_1$		
2*b _f *F _y		

x _f =

v	=	0.45 in
; x _{f1} ; t _f)	=	0.45 in

$$IF(x_{f1} \le t_f; x_{f1}; t_f)$$
$$x_f^* b_f^* F_y$$

$$T_s = (A_s - x_f * b_f) * F_y = 588 kips$$

 $C = T_s - C_{sf} = 441 kips$

Check the percentage of partial composite action:

$$\alpha = C / MIN(C_c; C_s)$$

IF($\alpha < 0.50$; "Conservative"; "o.k.") Check case=

Determine the nominal moment resistance of the composite section following the procedure in Specification Commentary Section I3.2a: (calculating the sum. of moments about the P.N.A.)

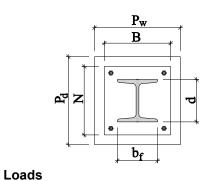
$$a_c$$
= $\frac{C}{0.85 * f_c * b_e * 12}$ =1.08 in M_{n2} = $1/12^*(C^*(t_s + x_f - a_c/2) + C_{sf}^*(x_f/2) + T_s^*(d/2 - x_f))$ =763 kip*ftFlexural_safety2=IF(M_{n2} \ge M_{u2}; "Safe"; "Unsafe")=Safe

Chapter 3: Steel Design

Composite Beam Subjected to Bending

AISC Page: 158

	Composite deflection: (A	ISC specs. I3.1 and Eqn. C-13-1)			
	Y _{ENA} =	$(A_s^{*}d/2+(C/F_y)^{*}(d+(t_s-a_c/2)))/(A_s+C/F_y)$	=	16.91 in	
	I _{Lb} =	$I_x + A_s^* (Y_{ENA} - d/2)^2 + (C/F_y)^* (d + (t_s - a_c) - Y_{ENA})^2$	=	2545 in ³	
	Δ _c =	$\frac{5*\frac{W_{L2}}{12}*(L*12)^{4}}{384*E_{s}*I_{Lb}}$	=	1.25 in	
	Δ _{recom} =	L*12 360	=	1.50 in	
	Deflection_check2=	$IF(\Delta_{c} < \Delta_{recom}; "Safe"; "Unsafe")$	=	Safe	
Summ	nary				
	Pre-composite condition				
	M _{u1} =	$\frac{w_{u1} * L^2}{8}$	=	344 kip*ft	
	M _{n1} =	$\Phi_{b} * M_{p}$	=	412 kip*ft	
	Flexural_safety1=	IF(M _{n1} ≥ M _{u1} ; "Safe"; "Unsafe")	=	Safe	
	Δ _{nc} =	$\frac{5*\frac{w_{D1}}{12}*(L*12)^{4}}{384*E_{s}*I_{x}}$ L*12	=	2.59 in	
	Δ_{recom} =	360	=	1.50 in	
	Deflection_check=	IF((Δ _{nc} - Camber)<Δ _{recom} ; "Safe"; "Unsafe")	=	Safe	
	Composite condition:	2			
	M _{u2} =	$\frac{w_{u2} * L^2}{8}$	=	678 kip*ft	
	M _{n2} =	$1/12^{*}(C^{*}(t_{s}+x_{f}-a_{c}/2)+C_{sf}^{*}(x_{f}/2)+T_{s}^{*}(d/2-x_{f}))$	=	763 kip*ft	
	Flexural_safety2=	IF(M _{n2} ≥ M _{u2} ; "Safe"; "Unsafe")	=	Safe	
	Δ _{nc} =	$\frac{5*\frac{w_{D1}}{12}*(L*12)^{4}}{384*E_{s}*I_{x}}$	=	2.59 in	
	Deflection_check=	IF((Δ _{nc} - Camber)<Δ _{recom} ; "Safe"; "Unsafe")	=	Safe	



Base Plate Subjected to Concentric Loading

Chapter 4: Connection Design

Design of Base Plate Bearing on Concrete Subjected to Concentric Loading

Dead Load, P_D= 115.0 kips Live Load, P_L= 345.0 kips

Material Properties

SEL("Material/ASTM"; NAME;)	=	A36
TAB("Material/ASTM";F _y ;NAME=Grade)	=	36 ksi

Column and Pedestal Data

Concrete strength for pedestal (f'_c):

f'c=				3 ksi
Sec.:	SEL("AISC/W"; NAME;)	=	W	12X96
Pedestal depth, P _d =				24 in
Pedestal width, P _w =				24 in
Depth of column, d=	TAB("AISC/W";d; NAME=Sec.)	=		12.7 in
Flange of column, b _f =	TAB("AISC/W";b _f ;NAME=Sec.)	=		12.2 in

The Required Strength

(Chapter 2 of AS	CE/SEI 7)		
P _u =	1.2*P _D +1.6*P _L	=	690 kips

Preliminary Base Plate Dimensions

Φ_{c} =			0.65
A _{1req} =	$\frac{P_{u}}{\Phi_{c} * 0.85 * f_{c}}$	=	416 in ²
N1=	d+2*3	=	18.7 in
N=	MAX(N1;√(A _{1req})+0.5*(0.95*d-0.8*b _f))	=	22 in

Chapter 4: Connection Design Base Plate Subjected to Concentric Loading

AISC Page: 160

B1=	b _f +2*3	=	18.2 in
B=	IF((d-b _f)<1;MAX(B1;A _{1req} /N;N);MAX(B1;A _{1req} /N))	=	22 in
Concrete Bearing Strength			
Pedestal area, A ₂ =	P _d * P _w	=	576 in ²
Base plate area, A ₁ =	N*B	=	484 in ²
Check plate area=	IF(A ₁ >A _{1req} ;"o.k.";"Unsafe")	=	o.k.
P _b =	MIN(0.85*f'c*A ₁ *√(A ₂ /A ₁) ; 1.7*f'c*A ₁)	=	1346 kips
Concrete bearing stre	ngth ($\Phi_{c} P_{p}$):		
$\Phi_{c}P_{p}=$	$\Phi_{c}^{*}P_{b}$	=	875 kips
Check safety, check=	IF(Φ _c P _p >P _u ;"o.k.";"Unsafe")	=	o.k.
Base Plate Thickness			
m=	<u>N-0.95*d</u> 2	=	4.97 in
n=	$\frac{\text{B-0.8*b}_{\text{f}}}{2}$	=	6.12 in
n'=	$\frac{\sqrt{d * b_f}}{4}$	=	3.11 in
X=	$ \left(4^{*}d^{*}\frac{b_{f}}{\left(d+b_{f}\right)^{2}}\right)^{*}\left(\frac{P_{u}}{\Phi_{c}^{*}P_{b}}\right) $	=	0.79
λ=	MIN(2*√(X)/(1+√(1-X)) ; 1.00)	=	1.00
=	MAX(m ; n; λ*n')	=	6.12 in
f _{pu} =	Ρ _u N*B	=	1.43 ksi
t _{min} =	$I^* \sqrt{\frac{2^* f_{pu}}{0.9^* f_{yp}}}$	=	1.82 in
t=	TAB("Material/plate_th";t_fr;t_in>tmin)	=	2.00 in
Summary: Use Plate with Th	e Following Dimensions		
Plate length=	Ν	=	22 in
Plate width=	В	=	22 in
Plate thickness=	t	=	2.00 in

Base Plate Subjected to Small Eccentricity

<u>I</u>		
Design of Base Plate Bearing on Concrete Sul	ojected to Small Eccentricity, e ≤ N/6	
$\begin{array}{c c} P \\ \hline M \\ \hline M \\ \hline F_2 \\ \hline N \\ \hline \end{array} \\ F_3 \\ F_1 \\ \hline \end{array}$		
Loads		
Dead Load, P _D =		50 kips
Live Load, P _I =		90 kips
Moment from D.L., M _D =		100 kip*in
Moment from L.L., M _I =		180 kip*in
_		
Base Plate Material Properties Grade: SEL("Material/AS	STM"· NAMF·) =	A36
	STM";F _v ;NAME=Grade) =	36 ksi
Column, Base Plate and Pedestal Dimensions	y.	
Concrete strength for pedestal (f'_c) :		
$f'_c =$		3 ksi
Sec.: SEL("AISC/W"; I	NAME:) =	W10X112
Pedestal depth, P_d =		17 in
Pedestal width, P _w =		14 in
Base plate depth, N=		17 in
Base plate width, B=		14 in
Depth of column, d= TAB("AISC/W";c	; NAME=Sec.) =	11.4 in
Flange of column, b _f = TAB("AISC/W";b	;NAME=Sec.) =	10.4 in
Check Eccentricity Size		
M _t = M _D +M _L	=	280 kip*in
P _t = P _D +P _L	=	140 kips
e= M _t /P _t	=	2.00 in
Check_e= IF(e≤ N/6;"O.K."	"not O.K.") =	O.K.
(Note that: if this check was not O.K., this	template will give a wrong solution)	

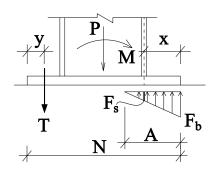
he Ultimate Load and	d Moment		
(Chapter 2 of A	SCE/SEI 7)		
P _u =	1.2*P _D +1.6*P _L	=	204 kips
M _u =	1.2*M _D +1.6*M _L	=	408 kip*in
he Maximum Bearing	g Stress, F _b		
Φ_{c} =			0.60
A ₁ =	N*B	=	238.00 in ²
A ₂ =	P _d *P _w	=	238.00 in ²
F _{b1} =	$0.85^{*}\Phi_{c}^{*}f_{c}^{*}\sqrt{(A_{2}/A_{1})}$	=	1.53 ksi
F _{b2} =	1.7*f' _c	=	5.10 ksi
F _b =	MIN(F _{b1} ;F _{b2})	=	1.53 ksi
F ₁ =	IF(Check_e="O.K."; $\frac{P_u}{A_1} + \frac{M_u * N/2}{(B * N^3)/12}$; "	") =	1.46 ksi
F ₂ =	$\frac{P_{u}}{A_{1}} - \frac{\frac{M_{u} * \frac{N}{2}}{2}}{\frac{B * N^{3}}{12}}$	=	0.25 ksi
Check_F=	IF(F ₁ <f<sub>b;"Safe";"Unsafe")</f<sub>	=	Safe
ase Plate Thickness:	:		
The critical sect	tion is at distance (x) from the plate edge, where:		
x=	$\frac{N-0.95*d}{2}$	=	3.09 in
The distance fro	om the base center to this section (x_1) and the stre	ss at this section (F _s) can be calculated
as:			
x ₁ =	$\frac{N}{2}$ -x	=	5.41 in
	IF(Check_e="O.K."; $\frac{P_u}{A_1} + \frac{M_u * x_1}{(B * N^3)/12}$; "	") =	1.24 ksi

The factored moment for a 1-in strip at this section (M_s) can be calculated as follows:

$$M_{s} = \frac{F_{s} * x^{2}}{2} + (F_{1} - F_{s})^{*} \frac{x^{2} * 0.67}{2} = 6.62 \text{ kip*in}$$
$$= 0.90 \text{ in}$$

1	4 "IVI _S	
Ŋ	0.9*f _{yp}	

Summary: Use Plate with The Following Minimum Dimensions


Plate length=	Ν	=	17 in
Plate width=	В	=	14 in
Plate thickness=	t _{p,min}	=	0.90 in

Base Plate Subjected to Large Eccentricity

Design of Base Plate Bearing on Concrete Subjected to Large Eccentricity, e > N/2

Loads

Dead Load, P _D =	21 kips
Live Load, P _L =	39 kips
Moment from D.L., M _D =	171 kip*in
Moment from L.L., M _I =	309 kip*in

Base Plate Material Properties

Grade:	SEL("Material/ASTM"; NAME;)	=	A36
Yield stress, f _{yp} =	TAB("Material/ASTM";F _y ;NAME=Grade)	=	36 ksi

Column, Base Plate and Pedestal Dimensions

Concrete strength for pedestal (f'_c):

f'c=			3 ksi
Sec.:	SEL("AISC/W"; NAME;)	=	W8X35
Pedestal depth, P _d =			28 in
Pedestal width, P _w =			28 in
Base plate depth, N=			14 in
Base plate width, B=			14 in
Distance to bolt, y=			1.50 in
Depth of column, d=	TAB("AISC/W";d; NAME=Sec.)	=	8.1 in
Flange of column, b _f =	TAB("AISC/W";b _f ;NAME=Sec.)	=	8.0 in
Check Eccentricity Size			

$M_{D}+M_{L}$ 480 kip*in M_t= = P_t= $P_{D}+P_{L}$ 60 kips = 8.00 in e= M_t/P_t = IF(e> N/2;"O.K.";"not O.K.") 0.K. Check e= =

(Note that: if this check was not O.K., this template will give a wrong solution)

(Chapter 2 of A	ASCE/SEI 7)		
P _u =	1.2*P _D +1.6*P _L	=	88 kips
M _u =	1.2*M _D +1.6*M _L	=	700 kip*in
Maximum Bearing	g Stress, F _b		
Φ_{c} =			0.60
A ₁ =	N*B	=	196.00 in ²
A ₂ =	P _d *P _w	=	784.00 in
F _{b1} =	$0.85^{*}\Phi_{c}^{*}f_{c}^{*}\sqrt{(A_{2}/A_{1})}$	=	3.06 ks
F _{b2} =	1.7*f' _c	=	5.10 ks
F _b =	MIN(F _{b1} ;F _{b2})	=	3.06 ks
N'=	N-y	=	12.50 in
F'=	$\frac{F_b * B * N'}{2}$	=	267.8 ksi
Distance from	the base to bolt centers (A') is:		
A'=	$\frac{N}{2}$ -y	=	5.50 in
M ₁ =	Pu*A'+Mu	=	1184 kip*ir
A ₁ =	$\frac{F' + \sqrt{(F')^2 - 4 \cdot \frac{F_b \cdot B}{6} \cdot M_1}}{\frac{F_b \cdot B}{3}}$	=	32.4 in
A ₂ =	$\frac{F' - \sqrt{(F')^2 - 4 * \frac{F_b * B}{6} * M1}}{\frac{F_b * B}{3}}$	=	5.1 in
A=	$MIN(A_1; A_2)$	=	5.1 in
Check_A=	IF(A <n';"o.k.";"not o.k.")<="" td=""><td>=</td><td>О.К.</td></n';"o.k.";"not>	=	О.К.
(If this check w	vas not O.K., increase plate dimensions to find a solu	ution or check inp	outs)
ion in Bolts			
T=	$\frac{F_{b}^{*}A^{*}B}{2}-P_{u}$	=	21.2 kip

Base Plate Subjected to Large Eccentricity

4 05 :--

Base Plate Thickness

The critical section is at distance (x) from the plate edge, where:	

۸ v

$$\frac{N-0.95^{\circ}d}{2}$$
 = 3.15 in

The distance from the zero stress point to this section (x_1) and the stress at this section (F_s) can be calculated as:

$$x_1 = A - x = 1.95 \text{ in}$$

 $F_s = x_1/A^*F_b = 1.17 \text{ ksi}$

The factored moment for a 1-in strip at this section (M_{s1}) can be determined from the bearing stress distribution as follows:

M_{s1}=
$$\frac{F_s * x^2}{2} + (F_b - F_s)^* \frac{x^2 * 0.67}{2} = 12.09 \text{ kip*in}$$

Also, The moment based on the critical section on the anchor bolt side is determined as follows (it is assumed that the critical plate width is based on the load spreading out at 45 degrees:

$$M_{s2}$$
 = T/2*(x-y)/(2*(x-y)) = 5.30 kip*in

So, the critical moment is the maximum from $\rm M_{s1}$ and $\rm M_{s2}$ as follows:

M _s =	$MAX(M_{s1};M_{s2})$	=	12.09 kip*in
t _{p,min} =	$\sqrt{\frac{4 * M_s}{0.9 * f_{yp}}}$	=	1.22 in

Summary: Use Plate with The following Minimum Dimensions

Plate length=	Ν	=	14 in
Plate width=	В	=	14 in
Plate thickness=	t _{p,min}	=	1.22 in

Shear Lug

	G H ŢŢŢ	$ \begin{array}{c c} P_{D} \\ P_{L} \\ V_{lg} \end{array} $		
oads	6			
	Dead Load, P _D =			120 kips
	Live Load, P _L =			150 kips
	Shear Load, V_w =			55 kips
Base	Plate Material Propert	ties		
	Grade:	SEL("Material/ASTM"; NAME;)	=	A36
	Yield stress, f _{yp} =	TAB("Material/ASTM";F _y ;NAME=Grade)	=	36 ksi
Colun	nn, Base Plate and Pe	destal Dimensions		
	Concrete strength for	r pedestal (f' _c):		
	f'c=			3 ksi
	Base plate depth, N=	-		14 in
	Base plate width, B=			14 in
	The coefficient of fric	tion, μ=		0.55
	Shear lug width, W=			8 in
	Grout depth, G=			1.0 in
The P	ortion of The Shear w	which can be Transferred by Friction Equal to μ :		
	V _{lgu} =	1.3*V _w - μ*(0.9*P _D)	=	12.1 kips
The R	Required Bearing Area	I		
	Φ_{c} =			0.60
	A _{lgu} =	$\frac{V_{lgu}}{0.85*\Phi_{c}*f_{c}}$	=	7.9 in ²
The H	leight of The Bearing	Portion		
	H=	A _{lgu} /W	=	0.99 in

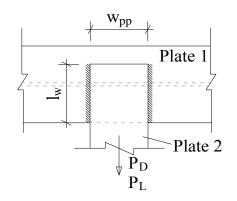
0.43 in

=

Base Plate Thickness

M _{Igu} =	$\frac{V_{lgu}}{W} * \frac{H+G}{2}$	=	1.5 kip*in		
t _{lg} =	$\sqrt{rac{4*M_{lgu}}{0.9*f_{yp}}}$	=	0.43 in		
Summary: Use Shear Lug with the Following Minimum Dimensions					
Depth=	H+G	=	2 in		
Width=	W	=	8 in		

Thickness= t_{lg}



Fillet Weld Subjected to Longitudinal Shear Force

0.1875 in

Design of Fillet Weld Subjected to Longitudinal Shear Force

Details of The Connected Plates

	Grade:	SEL("Material/ASTM"; NAME;)	=	A992	
	F _y =	TAB("Material/ASTM";F _y ;NAME=Grade)	=	50 ksi	
	Thickness of the first p	late, t _{p1} =		0.2500 in	
	Thickness of the secon	id plate, t _{p2} =		0.3750 in	
	Width of the perpendic	ular part, w _{pp} =		18.0 in	
Loads					
	Force:	SEL ("AISC/force"; type;)	=	Tension	
	Dead load, P _D =			33.0 kips	
	Live load, P _L =			100.0 kips	
	From Chapter 2 of ASC	CE/SEI 7, the required strength is:			
	P _u =	1.2*P _D +1.6*P _L	=	199.6 kips	
Preliminary Welding Details					
	Electrode classification	number, F _{EXX} =		70 ksi	
	Length of weld on each	n side, I _w =		27.00 in	

Thickness of weld, t_w=

Safe

Fillet Weld Subjected to Longitudinal Shear Force

Design of Weld

- Check the maximum and minimum Weld Size (AISC Specification Section J2.2b) Minimum thickness of the connected parts (t_{pmin}):

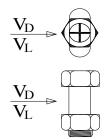
	t _{pmin} =	MIN(t _{p1} ; t _{p2})	=	0.2500 in
	t _{w,max} =	IF(t _{pmin} <1/4; t _{pmin} ; (t _{pmin} -1/16))	=	0.1875 in
	t _{w,min1} =	IF(t _{pmin} ≤1/4; 1/8; IF(((t _{pmin} >1/4 AND t _{pmin} ≤1/2); 3/16; 0))	=	0.1250 in
	t _{w,min2} =	IF((t _{pmin} >1/2 AND t _{pmin} ≤3/4); 1/4; 5/16)	=	0.3125 in
	t _{w,min} =	$IF(t_{w,min1}=0;t_{w,min2};MIN(t_{w,min1};t_{w,min2}))$	=	0.1250 in
	Check_1=	$IF((t_{w} \geq t_{w,min} AND tw \leq t_{w,max}); "O.K."; "Increase t_{w}")$	=	O.K.
	- Minimum required leng			
	l _{w,min} =	$\frac{P_{u}}{0.60*F_{EXX}*t_{w}/\sqrt{2}*0.75*2}$	=	23.9 in
	- Check length for perp	endicular plate width:		
	Check1=	$IF(F="C"; "O.K."; IF(I_{w,min} \geq w_{pp}; "O.K."; "increase I_{w}"))$	=	O.K.
	- Calculate the effective	weld length:		
	$\lambda_w =$	I _w /t _w	=	144.0 in
	β _w =	MIN(1.2-0.002*λ _w ;1)	=	0.91 in
	I _{w,eff} =	$\beta_{w}^{*} I_{w}$	=	24.57 in
	- Recheck the weld at it	s reduced strength:		
	$\Phi R_n =$	$0.75 * 2 * I_{w,eff} * t_w / \sqrt{2} * 0.6*F_{EXX}$	=	205.2 kips
	Check_2=	IF(Φ R _n >P _u ;"Safe"; "Unsafe")	=	Safe
Design	n Summary			
	Electrode=	F _{EXX}	=	70.0 ksi
	Size=	t _w	=	0.1875 in
	length=	I _w	=	27.00 in
	P _u =	1.2*P _D +1.6*P _L	=	199.6 kips
	ΦR_n =	0.75 * 2 * $I_{w,eff}$ * $t_w / \sqrt{2}$ * 0.6* F_{EXX}	=	205.2 kips
	Check_1=	$IF((t_{w} \geq t_{w,min} AND t_{w} \leq t_{w,max}); "O.K."; "Increase t_{w}")$	=	O.K.

Check_2= $IF(\Phi R_n > P_u; "Safe"; "Increase weld size/length") =$

Bolts in Bearing Type Connection Subjected to T & V

Design of Bolts in Bearing Type Connection Subjected to Combined Tension and Shear Forces V_D T_D Τı **Details of Bolt** SEL("AISC/ASTM_bolts"; Name;) A325 Grade: = F_u= TAB("AISC/ASTM_bolts";F_u;Name=Grade) 120 ksi = Bolt: SEL("AISC/bolt"; Size;) d3/4 = Bolt diameter, d_b= TAB("AISC/bolt";dia;Size=Bolt) 0.7500 in = Area of bolt, A_b= TAB("AISC/bolt";Area;Size=Bolt) 0.4418 in⁴ = Loads Dead: Tension force, T_D = 3.50 kips Shear force, V_D = 1.3 kips Live: Tension force, $T_1 =$ 12.0 kips Shear force, V_I = 4.0 kips From Chapter 2 of ASCE/SEI 7, the required strength is: 23.4 kips T_u= 1.2*T_D+1.6*T_I = 1.2*V_D+1.6*V_I V_u= = 8.0 kips Check for Shear Φ= 0.75 From AISC Specification Table J3.2, The available shear strength (F_{nv}) : 0.40*F₁₁ 48.0 ksi F_{nv}= = The available shear stress (f_{rv}) : f_{rv}= V_u / A_b 18.1 ksi = $IF(\Phi^*F_{nv} \ge f_{rv};"Safe";"Increase d_b")$ Check_Shear= = Safe

Chapter 4: Connection Design Bolts in Bearing Type Connection Subjected to T & V


AISC Page: 172

for Tension Accompar	nied by Shear						
From AISC Specification Table J3.2,							
The available tensile strength (F _{nt}):							
F _{nt} =	0.75*F _u	=	90.0 ksi				
The available tensile st	rength of a bolt subject to combined tension and shear i	s as fo	llows, from AISC				
Spec. Eqn. J3.3a,							
F _{nt} ' =	1.30* $F_{nt} - \frac{F_{nt}}{\Phi * F_{nv}} * f_{rv}$	=	71.8 ksi				
The available tension for	prce (R _n):						
R _n =	A _b * MIN(F _{nt} ' ; F _{nt})	=	31.7 kips				
Check_Tension=	$IF(\Phi^*R_n \ge T_u;"Safe";"Increase d_b")$	=	Safe				
Summary							
Size=	d _b	=	0.7500 in				
F _u =	TAB("AISC/ASTM_bolts";F _u ;Name=Grade)	=	120 ksi				
f _{rv} =	V _u / A _b	=	18.1 ksi				
F _{nv} =	0.40*F _u	=	48.0 ksi				
Check_Shear=	$IF(\Phi^*F_{nv} \ge f_{rv};"Safe";"Increase d_b")$	=	Safe				
T _u =	1.2*T _D +1.6*T _L	=	23.4 kips				
R _n =	A _b * MIN(F _{nt} ' ; F _{nt})	=	31.7 kips				
Check_Tension=	$IF(\Phi^*R_n \ge T_u;"Safe";"Increase d_b")$	=	Safe				
	From AISC Specification The available tensile st F_{nt} = The available tensile st Spec. Eqn. J3.3a, F_{nt} = The available tension for R_n = Check_Tension= Summary Size= F_u = f_{rv} = F_{nv} = Check_Shear= T_u = R_n =	The available tensile strength (F_{nt}): F_{nt} = 0.75* F_u The available tensile strength of a bolt subject to combined tension and shear is Spec. Eqn. J3.3a, F_{nt} = $1.30* F_{nt} - \frac{F_{nt}}{\Phi * F_{nv}} * f_{rv}$ The available tension force (R_n): R_n = $A_b * MIN(F_{nt}'; F_{nt})$ Check_Tension= $IF(\Phi * R_n \ge T_u; "Safe"; "Increase d_b")$ Summary Size= d_b F_u = TAB("AISC/ASTM_bolts"; F_u ; Name=Grade) f_{rv} = V_u / A_b F_{nv} = 0.40* F_u Check_Shear= $IF(\Phi * F_{nv} \ge f_{rv}; "Safe"; "Increase d_b")$ T_u = 1.2* T_D +1.6* T_L R_n = $A_b * MIN(F_{nt}'; F_{nt})$	From AISC Specification Table J3.2, The available tensile strength (F_{nt}): F_{nt} =0.75* F_u =The available tensile strength of a bolt subject to combined tension and shear is as for Spec. Eqn. J3.3a,= F_{nt} = $1.30* F_{nt} - \frac{F_{nt}}{\Phi*F_{nv}}*f_{rv}$ =The available tension force (R_n):= R_n = $A_b * MIN(F_{nt}'; F_{nt})$ =Check_Tension=IF($\Phi^*R_n \ge T_u$;"Safe";"Increase d_b ")=Summary=Size= d_b = $F_u^=$ TAB("AISC/ASTM_bolts"; F_u ; Name=Grade)= $F_{nv}^=$ 0.40* F_u =Check_Shear=IF($\Phi^*F_{nv} \ge f_{rv}$;"Safe";"Increase d_b ")= $T_u^=$ $1.2*T_D+1.6*T_L$ = R_n = $A_b * MIN(F_{nt}'; F_{nt})$ =				

Slip Critical Connection with Short-Slotted Holes

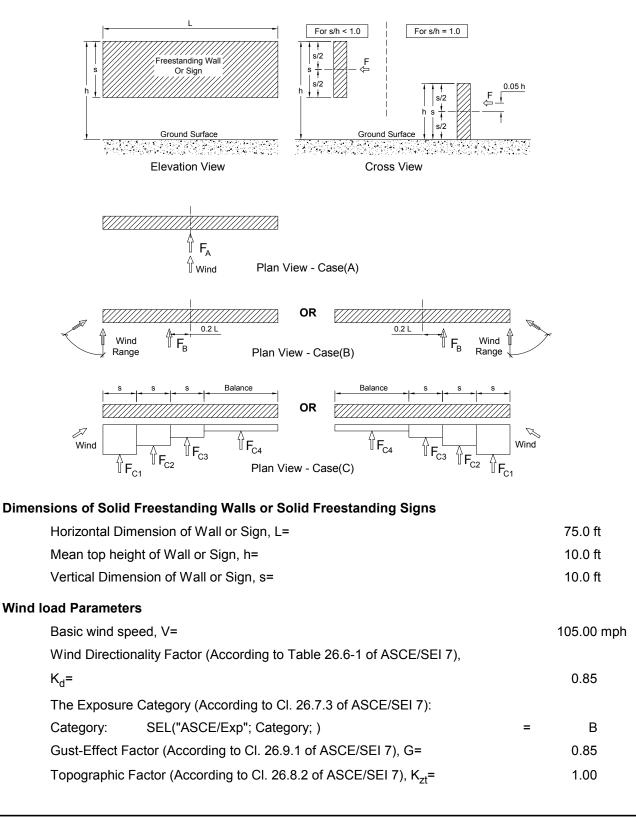
Design of Slip Critical Connection with Short-Slotted Holes Subjected to Shear Force

Details of Bolt (short slots transverse to the load)

			,		
	Grade:	SEL("AISC/AS	TM_bolts"; Name;)	=	A325
	F _u =	TAB("AISC/AS	TM_bolts";F _u ;Name=Grade)	=	120 ksi
	Bolt:	SEL("AISC/J3.	1"; Size;)	=	d3/4 A325
	Bolt diameter, d _b =	TAB("AISC/J3.	1";dia;Size=Bolt)	=	0.7500 in
	Area of bolt, A _b =	TAB("AISC/J3.	1";Area;Size=Bolt)	=	0.4418 in ⁴
	Class:	SEL("AISC/Cla	iss";class;)	=	Class_A
	T _b =	TAB("AISC/J3.	1";T _b ;Size=Bolt)	=	28 kips
	μ=	TAB("AISC/Cla	ass2"; mio; cat=Class_sym)	=	0.35
	(T _b is the minimum bolt pretension and μ is the mean slip coefficient)				
	D _u =				1.13
	Number of slip planes,	n _s =			2
	hole factor, h _f =				1.00
Loads					
	Shear force due to dea	d load, V _D =			3.00 kips
	Shear force due to live	load, V _L =			7.00 kips
	From Chapter 2 of ASC	E/SEI 7, the rec	uired strength is:		
	V _u =		1.2*V _D +1.6*V _L	=	14.8 kips
Check	for Slip Resistance				
	Ф=				1.00
	The design slip resistar	nce, ΦR_n =	$\Phi * \mu * D_u * h_f * T_b * n_s$	=	22.15 kips
	Check_slip=		$IF(\Phi R_n \ge V_u;"Safe"; "Unsafe")$	=	Safe

Chapter 4: Connection Design Slip Critical Connection with Short-Slotted Holes

AISC Page: 174


Check The Limit State of Bolt Shear					
$\Phi_2 =$			0.75		
From AISC Specification Table J3.2,					
The available shear strength, F _{nv} =	0.40*F _u	=	48.0 ksi		
The actual shear stress, f _{rv} =	V _u / (A _b)	=	33.5 ksi		
Check_Shear=	$IF(\Phi_2 * F_{nv} \ge f_{rv}; "Safe"; "Increase d_b")$	=	Safe		
Design Summary					
Size=	d _b	=	0.7500 in		
F _u =	TAB("AISC/ASTM_bolts";F _u ;Name=Grade)	=	120 ksi		
V _u =	1.2*V _D +1.6*V _L	=	14.8 kips		
The design slip resistance, ΦR_n =	$\Phi * \mu * D_u * h_f * T_b * n_s$	=	22.15 kips		
Check_slip=	$IF(\Phi R_n \ge V_u;"Safe"; "Unsafe")$	=	Safe		
The available shear stress, f_{rv} =	V _u / A _b	=	33.5 ksi		
The available shear strength, F_{nv} =	0.40*F _u	=	48.00 ksi		
Check_Shear=	$IF(\Phi_2 * F_{nv} \ge f_{rv};"Safe";"Increase d_b")$	=	Safe		

ASCE-7 Page: 175

Chapter 5: Design Loads

Calculation of Wind load for Solid Freestanding Walls & Signs as per ASCE/SEI 7-10 Chapters 26 & 29

Chapter 5: Design Loads Wind load for Solid Freestanding Walls & Signs

ASCE-7 Page: 176

Velocity Pressure				
According t	o (Table 26.9-1 of ASCE/SEI 7),			
α=	TAB("ASCE/Exp"; Alph; Categ	gory=Category)	=	7.00
According t	o (Table 26.9-1 of ASCE/SEI 7),			
z _g =	TAB("ASCE/Exp"; zg; Categor	ry=Category)	=	1200.00
The Velocit	y Pressure Exposure Coefficient (A	-	SCE/SE	17):
K _h =	IF(h<15; 2.01*(15/z _g) ^{(2/α}); 2.01*(h/z _g) ^(2/α))	=	0.57
Velocity Pre	essure (According to Cl. 29.3.2 of A	SCE/SEI 7),		
q _h =	0.00256*K _h *K _{zt} *K _d *V ²		=	13.67 psf
The gross a	area of the solid freestanding wall o	r sign, A _s =L * s	=	750 ft²
Ratio of sol	id area to gross area, ϵ =			1.00
Reduction I	Factor for Openings, RF=	1 -(1 - _ε) ^{1.5}	=	1.00
Wind Forces - Cas	se A			
Force Coef	ficient (According to Fig. 29.4-1 of A	ASCE/SEI 7), C _{fA} =		1.33
Design win	d force (According to Cl. 29.4.1 of A	ASCE/SEI 7),		
F _A =	q _h *G*C _{fA} *A _s *RF/1000		=	11.6 kips
Wind Forces - Cas	se B			
Force Coef	ficient (According to Fig. 29.4-1 of A	ASCE/SEI 7), C _{fB} =		1.33
Design win	d force (According to Cl. 29.4.1 of A	ASCE/SEI 7),		
F _B =	$q_h \times G \times C_{fB} \times A_s \times RF/1000$		=	11.6 kips
Wind Forces - Cas	se C			
Region-1 fr	rom (0 to s or less)			
Force Coef	ficient for Region-1 (According to F	ig. 29.4-1 of ASCE/SEI 7),		
C _{fC1} =				3.48
Effective A	rea for Region-1, A _{sC1} =IF(L/s>1;s*s	s;L*s;)	=	100 ft ²
Design Wir	nd Force for Region-1 (According to	Cl. 29.4.1 of ASCE/SEI 7).		
F _{C1} =	RF/1000*MAX(16;q _h *G*C _{fC1} *I	F(s/h>0.8;(1.8-s/h);1))*A _{sC1}	=	3.2 kips
Region-2 fr	rom (s to 2s) Validation:	IF(L/s>1;"Valid";"Invalid";)	=	Valid
	ficient for Region-2 (According to F	ig. 29.4-1 of ASCE/SEI 7),		
C _{fC2} =				2.28
Effective A	rea for Region-2, A _{sC2} =IF(L/s>2;s*s	s;IF(L/s<1;0;(L-s)*s;);)	=	100 ft ²
Design Wir	nd Force for Region-2 (According to	Cl. 29.4.1 of ASCE/SEI 7).		
F _{C2} =	RF/1000*MAX(16;q _h *G*C _{fC2} *I	F(s/h>0.8;(1.8-s/h);1))*A _{sC2}	=	2.1 kips

Chapter 5: Design Loads

Wind load for Solid Freestanding Walls & Signs

ASCE-7 Page: 177

7.2 kips

=

	Region-3 from	. ,	Validation: IF(L/s>2;"Valid";"Invalid";)	=	Valid
	Force Coefficie	ent for Region-3 (A	According to Fig. 29.4-1 of ASCE/SEI 7),		
	C _{fC3} =				1.68
	Effective Area f	for Region-3, A _{sC3}	₃ =IF(L/s>3;s*s;IF(L/s<2;0;(L-2*s)*s;);)	=	100 ft ²
	Design Wind Force for Region-3 (According to Cl. 29.4.1 of ASCE/SEI 7).				
	F _{C3} = RF/1000*MAX(16;q _h *(l6;q _h *G*C _{fC3} *IF(s/h>0.8;(1.8-s/h);1))*A _{sC3}	=	1.6 kips
	Region-4 from	(3s to L)	Validation: IF(L/s>3;"Valid";"Invalid";)	=	Valid
	Force Coefficient for Region-4 (According to Fig. 29.4-1 of ASCE/SEI 7),				
	C _{fC4} =				1.05
	Effective Area for Region-4, A _{sC4} =IF(L/s>3;(L-3*s)*s;0;)			=	450 ft ²
	Design Wind Force for Region-4 (According to Cl. 29.4.1 of ASCE/SEI 7).				
	F _{C4} =	RF/1000*MAX(1	l6;q _h *G*C _{fC4} *IF(s/h>0.8;(1.8-s/h);1))*A _{sC4}	=	7.2 kips
Calculation Summary					
	F _A =	F _A		=	11.6 kips
	F _B =	F _B		=	11.6 kips
	F _{C1} =	F _{C1}		=	3.2 kips
	F _{C2} =	F _{C2}		=	2.1 kips
	F _{C3} =	F _{C3}		=	1.6 kips

 $F_{C3} = F_{C3}$ $F_{C4} = F_{C4}$

Chapter 5: Design Loads

Snow Loads for Flat Roof

ASCE-7 Page: 178

Calculation of Snow Loads for Flat Roof as per ASCE/SEI 7-10 Chapter 7

Parameters of Snow Load

	Ground Snow Loads (According to Table 7-1 of ASCE/SEI 7), p _g =		18.00 psf
	Snow Density (Accord	ing to Eq. 7.7-1 of ASCE/SEI 7),		
	γ=	MIN(0.13 * p _g + 14; 30)	=	16.34 lb/ft ³
	Terrain Category (Acc	ording to Table 7-2 of ASCE/SEI 7),		
	TER_CAT=	SEL("ASCE/Ter_Cat"; ID;)	=	В
	Exposure of Roof (Acc	cording to Table 7-2 of ASCE/SEI 7),		
	EX_RF=	SEL("ASCE/EX_RF"; ID;)	=	Fully Exposed
	Exposure Factor (Acco	ording to Table 7-2 of ASCE/SEI 7),		
	C _e =			0.90
	Thermal Factor (According to Table 7-3 of ASCE/SEI 7),			
	C _t =	SEL("ASCE/Ct"; ID;)	=	1.00
	Risk Category (According to Table 1.5-1 of ASCE/SEI 7),			
	RI_CAT=	SEL("ASCE/Risk_Cat"; ID;)	=	Ш
	Importance Factor (Ac	cording to Table 1.5-2 of ASCE/SEI 7),		
	I _s =	TAB("ASCE/Is"; ls; RI_CAT=RI_CAT;)	=	1.00
Snow	Load for Flat Roof			
Min Snow Load (According to Cl. 7.3.4 of ASCE/SEI 7),				
	p _m =	IF(p _g >20; 20*I _s ; p _g *I _s)	=	18.00 psf
	Flat Roof Snow Load (According to Cl. 7.3 of ASCE/SEI 7),			
	p _f =	0.7 * C _e * C _t *I _s * p _g	=	11.34 psf
Calcu	lation Summary			
	Min Snow Load, p _m =	р _т	=	18.00 psf
	Flat Roof Snow Load,	p _f = p _f	=	11.34 psf

Chapter 5: Design Loads

Snow Loads for Sloped Roof

ASCE-7 Page: 179

Calculation of Snow Loads for Sloped Roof as per ASCE/SEI 7-10 Chapter 7

Parameters of Snow Load

	Ground Snow Loads (According to Table 7-1 of ASCE/SEI 7), p _a = 40.00 pf			40.00 pf
	Density of Snow (According to Eq. 7.7-1 of ASCE/SEI 7),			
		l(0.13 * p _a + 14; 30)	=	19.20 lb/ft ³
		to Table 7-2 of ASCE/SEI 7),		
		.("ASCE/Ter_Cat"; ID;)	=	В
	Exposure of Roof (According	to Table 7-2 of ASCE/SEI 7),		
	EX_RF= SEI	.("ASCE/EX_RF"; ID;)	=	Fully Exposed
	Exposure Factor (According	to Table 7-2 of ASCE/SEI 7),		
	C _e =			0.70
	Thermal Factor (According t	o Table 7-3 of ASCE/SEI 7),		
	C _t = SEI	.("ASCE/Ct"; ID;)	=	1.10
	Risk Category (According to	Table 1.5-1 of ASCE/SEI 7),		
	RI_CAT= SEI	.("ASCE/Risk_Cat"; ID;)	=	Ш
	Importance Factor (Accordin	g to Table 1.5-2 of ASCE/SEI 7),		
	I _s = TAE	8("ASCE/Is";	=	1.00
Snow	Snow Load for Flat Roof			
	Min Snow Load (According t	o Cl. 7.3.4 of ASCE/SEI 7),		
	p _m = IF(p	_{/g} >20; 20*I _s ; p _g *I _s)	=	20.00 psf
	Flat Roof Snow Load (Accor	ding to Cl. 7.3 of ASCE/SEI 7),		
	p _f = 0.7	* C _e * C _t *I _s * p _g	=	21.56 psf
Snow Load for Sloped Roof				
	α=			20.0 ⁰
	Thermal Resistance Value F	?=		30.0 ⁰ Fh ft ² /Btu
	Thermal Resistance Value R=30.0 ° Fh ft²/Roof Slope Factor (According to Fig. (7-2b) of ASCE/SEL 7,30.0 ° Fh ft²/			
	C _s =			1.00
	Sloped Roof Snow Load (Ac	cording to CI.7.4 of ASCE/SEL 7),		
	p _s =	p _f *C _s	=	21.56 in
Calcul	lation Summary			
	Min Snow Load, p _m =	p _m	=	20.00 psf
	Flat Roof Snow Load, p _f =	P _f	=	21.56 psf
	Sloped Roof Snow Load, p _s :	= p _s	=	21.56 in

Chapter 5: Design Loads Seismic Base Shear

ASCE-7 Page: 180

Seismic Base Shear		1 age. 100
Coloulation of Sciencia Base Sheer on your ASSE/SEL7.40 Chapter 14		
Calculation of Seismic Base Shear as per ASCE/SEI 7-10 Chapter 11		
Seismic Story Forces		
Seismic Base Shear (V)		
Site Parameters		
(According to Cl.11.4.2 of ASCE/SEI 7),		
Site Class: SEL("ASCE/Site_CI"; ID;)	=	А
Mapped Acceleration Parameters		
(According to CI.11.4.1 of ASCE/SE1 7),		
At Short Period, S _s =		1.50
At 1 Second Period, S ₁ =	(0.50
Site Coefficient at Short Period, F _a =		1.00
Site Coefficient at 1 Second Period, F _v =		1.30
Spectral Response Acceleration Parameters		
(According to Cl.11.4.3 of ASCE/SE1 7),		
Spectral Response Acceleration at Short Period, S_{MS} = $F_a^*S_s$	= ^	1.50
Spectral Response Acceleration at 1 Second Period, S_{M1} = $F_v * S_1$	= (0.65
Design Spectral Acceleration Parameters		
(According to CI.11.4.4 of ASCE/SE1 7),		
Design Spectral Acceleration Parameter at Short Period, S_{DS} = 2/3* S_{MS}	= ^	1.00
Design Spectral Acceleration Parameter at 1 Second period, S_{D1} = 2/3* S_{M1}	= ().43
Risk Category		
Risk Category (According to Table 1.5-1 of ASCE/SEI 7),		
RI_CAT= SEL("ASCE/Risk_Cat"; ID;)	=	I
Importance Factor (According to Table 1.5-12 of ASCE/SEI 7),		
I _e = TAB("ASCE/le"; le; RI_CAT=RI_CAT)	= ^	1.00

Chapter 5: Design Loads Seismic Base Shear

ASCE-7 Page: 181

Fundamental Period:			
(According to CI.12.8.2 of ASCE/SEI 7),			
Type of Structure, STR= SEL("ACI/Ct&X"	;STR;) = All other	stru	ictural systems
Building Period Parameter, C _t = TAB(<u>"</u> ACI/Ct&X"	';Ct;STR=STR;)	=	0.020
Building Period Parameter, x= TAB(<u>"</u> ACI/Ct&X"	;X;STR=STR;)	=	0.750
Structure Height, h _n =			66.00 ft
Approximate Fundamental Period, T _a =	$C_t * h_n^x$	=	0.46 sec
Building fundamental period, T=	T _a	=	0.46 sec
Long-period transition period, T _L =			2.00
Seismic Response Coefficient			
(According to CI.12.8.1.1 of ASCE/SEI 7)			
Response Modification Coefficient (According to	Table 12.2-1), R=		3.25
Calculated Seismic Response Coefficient, C _{s.c} =	$\frac{S_{DS}}{R/I_{e}}$	=	0.3077
Maximum Seismic Response Coefficient, C _{s.max1}	(0)	=	0.2876
Maximum Seismic Response Coefficient, C _{s.max2}	$= \frac{S_{D1} * T_{L}}{T^{2} \times (R/I_{e})}$	=	1.2505
Maximum Seismic Response Coefficient, C _{s.max} =		=	0.2876
Minimum Seismic Response Coefficient, C _{s.min} =	0.044*S _{DS} *I _e	=	0.0440
Seismic Response Coefficient C _s = IF(C _{s.c} \geq C _{s.}	_{min} ;MIN(C _{s.c} ; C _{s.max});C _{s.min})	=	0.2876
Seismic Base Shear			
(According to CI.12.8.1 of ASCE/SEI 7),			
Effective Seismic Weight of Structure, W=			1305.00 kips
Seismic Base Shear V=	C _s *W	=	375.32 kips
Calculation Summary			
Seismic Base Shear V=	C _s *W	=	375.32 kips